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Identification 1 
 2 
Chemical Names: 3 
Al2Si2O5(OH)4; aluminum silicate dihydrate; 4 
aluminum silicate hydroxide; hydrated aluminum 5 
silicate 6 
 7 
Other Name: 8 
argilla bianca; Bolus alba; China clay; colloidal 9 
kaolin; French white clay; heavy kaolin; kaolin 10 
clay; kaolinite; light kaolin; white cosmetic clay 11 
 12 

Trade Names: 13 
1149 USP; Kaolin KR USP; Surround® WP 14 
 15 
CAS Numbers: 16 
1332-58-7 17 
 18 
Other Codes: 19 
E559 20 
EC#310-194-1 21 
RTECS#GF1670500 22 
 23 

Summary 24 
 25 
This limited scope technical report provides updated information to the National Organic Standards Board (NOSB) 26 
to support the sunset review of kaolin, listed at 7 CFR 205.605(a)(15). This report focuses on uses of kaolin in 27 
organic processing and handling, as an ingredient in or on processed products labeled as “organic” or “made with 28 
organic (specified ingredients or food group(s)).” 29 
 30 
Kaolin was included on the National List of Allowed and Prohibited Substances (hereafter referred to as the 31 
“National List”) with the first publication of the National Organic Program (NOP) Final Rule (65 FR 80548 32 
December 21, 2000). The NOSB has continued to recommend its renewal in 2007, 2012, 2017, and 2022 (NOSB, 33 
2009, 2010, 2015, 2020). 34 
 35 
As kaolin is listed at 7 CFR 205.605(a), only nonsynthetic forms are allowed. Kaolin is listed without further 36 
annotation limiting its use. The FDA considers kaolin to be Generally Recognized as Safe (GRAS) 37 
(21 CFR 186.1256) as an indirect food additive, and it is a common ingredient in paper and paperboard materials 38 
that processors use for food packaging.1 39 
 40 
In practice, kaolin appears to have niche uses in organic food production. We base this conclusion in part on public 41 
comments submitted in support of the sunset reviews of kaolin during the 2015 and 2020 NOSB meetings. 42 
Consequently, we found limited information specific to the evaluation questions requested. Based on these 43 
comments and other public sources, kaolin is used in organic production: 44 

• as an ingredient in personal care products2 45 
• as a filtration component in the manufacture of juices 46 

 47 
In 2015, a representative from Smucker Natural Foods stated that kaolin was essential for filtering organic juices 48 
(Dietz, 2015). Other commenters noted its use to prevent sunscald in fruit, a use that is not related to the handling 49 
scope. The Juice Products Association provided comments in 2015 and 2020, stating that kaolin was used in the 50 
production of juices, juice beverages, and juice products, but without further specifics (Juice Products Association, 51 
2015, 2020). 52 
 53 
In 2020, one certifier commented that six operations listed kaolin on their OSP for personal care products 54 
(California Certified Organic Farmers, 2020). Viseras et al (2021) describe kaolin as a filler, additive, and functional 55 
ingredient in personal care and cosmetic products. Another certifier stated that three operations listed kaolin on their 56 
OSP (Pennsylvania Certified Organic, 2020); however, they did not specify how kaolin was used. 57 
 58 

 
1 The FDA describes indirect food additives as follows: “In general, these are food additives that come into contact with food as part of 
packaging, holding, or processing, but are not intended to be added directly to, become a component, or have a technical effect in or on the food. 
Indirect food additives mentioned in Title 21 of the U.S. Code of Federal Regulations (21 CFR) for use in food-contact articles include adhesives 
and components of coatings (Part 175), paper and paperboard components (Part 176), polymers (Part 177), and adjuvants and production aids 
(Part 178). Currently, additional indirect food additives are authorized through the food contact notification program. In addition, indirect food 
additives may be authorized through 21 CFR 170.39” (US FDA, 2024). 
2 According to the USDA, personal care products (as well as cosmetics and body care products) are eligible for USDA organic certification and 
labelling if they contain agricultural ingredients and can otherwise meet USDA organic standards (USDA, 2008). 

https://www.federalregister.gov/citation/65-FR-80548
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Some uses reported for kaolin in the past do not require that kaolin be listed at § 205.605. For example, the authors 59 
of the 1995 TAP report on kaolin and bentonite note that kaolin is used in paper and paperboard materials that come 60 
in contact with food (NOSB, 1995). However, the organic regulations do not require substances used in food 61 
packaging to be reviewed under the handling/processing scope. The USDA organic regulations only specify that 62 
packaging materials, storage containers, and bins not be treated with synthetic fungicides, preservatives, or 63 
fumigants (§ 205.272): 64 
 65 

(b) The following are prohibited for use in the handling of any organically 66 
produced agricultural product or ingredient labeled in accordance with subpart D 67 
of this part: 68 

(1) Packaging materials, and storage containers, or bins that contain a 69 
synthetic fungicide, preservative, or fumigant; 70 
(2) The use or reuse of any bag or container that has been in contact with 71 
any substance in such a manner as to compromise the organic integrity 72 
of any organically produced product or ingredient placed in those 73 
containers, unless such reusable bag or container has been thoroughly 74 
cleaned and poses no risk of contact of the organically produced product 75 
or ingredient with the substance used. 76 

 77 
The 1995 TAP report also states that kaolin can be used as an anti-caking agent in processed food. While kaolin can 78 
function as an anti-caking agent (United States Pharmacopeial Convention, 2008), current FDA regulations do not 79 
include kaolin as a food additive for direct addition to food for human consumption as an anti-caking agent 80 
(21 CFR 172). Furthermore, we found no publicly available evidence that kaolin is commonly used as an anti-caking 81 
agent in human foods at the present time. 82 
 83 
Additional reported uses of kaolin relevant to the processing and handling scope include: 84 

• post-harvest pest control of stored grains (El-Shewy et al., 2024; Golob, 1997) 85 
• clarification of fruit wines (Awe, 2018; Minh, 2022) 86 
• filtration of seed oils (Wang et al., 2021) 87 

 88 
As a post-harvest pest control material, kaolin is allowed because of its inclusion at § 205.605(a), but also because it 89 
conforms to the requirements noted within NOP 5023 (NOP, 2016). In NOP 5023: Guidance, Substances Used in 90 
Post-Harvest Handling of Organic Products, the NOP describes the compliance of materials used for post-harvest 91 
pest control. Producers can use natural (nonsynthetic) substances (such as kaolin) that are allowed for use in crop 92 
production as a post-harvest handling material, regardless of whether they are present at § 205.605(a). 93 
 94 

Background 95 
 96 
“Kaolin” is a generic term with multiple levels of meaning in common usage (Dill, 2016; King, 2009; Kogel, 2014; 97 
Murray, 2007; Murray & Keller, 1993). 98 

• In clay science, kaolins are a particular group of hydrated aluminum silicate minerals with the formula 99 
Al2Si2O5(OH)4 and a simple structure in which each layer comprises one silica sheet and one alumina sheet 100 
held together by shared hydroxyl groups (King, 2009; Murray, 2007).3 Kaolinite is the most abundant of 101 
the kaolin minerals. 102 

• More generally, kaolin refers to a type of pale-colored clay rock that is rich in kaolinite. Kaolin clays are 103 
formed by weathering and/or hydrothermal alteration of granites and rhyolites. Kaolin is common 104 
worldwide and is mined on almost every continent (Dill, 2016; Kogel, 2014; Murray & Keller, 1993). 105 

 106 
Kaolin clay deposits contain a wide variety of other minerals (such as iron oxides, mica, and quartz) and organic 107 
(carbon-based) material in varying proportions (Murray, 2007). Kaolin products undergo a wide range of treatments, 108 
depending on the composition of the mined mineral source and the product’s intended application (Schroeder, 109 
2018). Treatments range from simple crushing, sieving, and water washing to sophisticated refinement techniques 110 
such as magnetic separation, delamination, and chemical removal of impurities.4 Manufacturers use both wet and 111 
dry processing methods to produce highly purified, fine-grained kaolinite powder without altering its natural 112 
physical and chemical properties (Murray, 2007). Such kaolin products are nonsynthetic, nonagricultural materials, 113 
consistent with kaolin’s listing at 7 CFR 205.605(a)(15). 114 
 115 

 
3 This describes the chemically bound water present between the alumina and silica sheets. 
4 Kaolin particles naturally consist of stacked layers, or plates. Delamination separates these stacks into individual plates. 



Technical Report Kaolin Handling/Processing 

April 11, 2025 Page 3 of 15 

Refined kaolin encompasses a range of particle sizes. Nano-size clay particles (i.e., those ≤100 nm in diameter) are 116 
abundant in nature and can be produced using methods that do not fundamentally alter the properties of the mineral 117 
(Deshmukh et al., 2023). Tan et al. (2017) analyzed the particle size distribution of a dry kaolinite powder frequently 118 
used as a reference mineral. They reported that 10-15% of the particles were smaller than 0.1 μM (100 nm), thus 119 
falling into the nanoscale range. In practice, kaolin manufacturers do not routinely evaluate the particle size 120 
distribution for the fraction smaller than 2 µM (Tan et al., 2017), so the presence or quantity of nano-size clay 121 
particles in a given product is likely to be unknown. NOP Policy Memorandum 15-2 (NOP, 2015), which addresses 122 
the use of nanotechnology in organic production and handling, notes that nanomaterials can occur naturally or as 123 
byproducts of processing, such as homogenization and milling. Such “incidental” nanomaterials, including the 124 
nanoscale particles that may be present in nonsynthetic kaolin products, are not prohibited in organic processing and 125 
handling (NOP, 2015). 126 
 127 
The authors of the 1995 TAP report on kaolin and bentonite (NOSB, 1995) state that kaolin “can be calcined in a 128 
kiln to produce a fine powder,” but they do not further distinguish between calcined and non-calcined kaolin. 129 
Calcination is an additional processing step that improves the brightness and opacity of kaolin for uses in paper 130 
filling and coating and other specialized applications (Murray, 2006). Metakaolin, formed from calcining kaolin, has 131 
a different chemical structure. As such, we consider it a different material than kaolin. 132 
 133 
To calcine kaolin, manufacturers heat kaolin (Al2Si2O5(OH)4; CAS No. 1332-58-7) in a kiln or calciner. 134 
Dehydroxylation (the release of hydroxyl groups) is the first step of calcination and typically occurs at temperatures 135 
between 400 °C–650 °C (Zunino & Scrivener, 2024). Kaolin is a 1:1 ratio clay, with a stacking crystal structure 136 
where each layer includes one silicate and one aluminate sheet (Zunino & Scrivener, 2024). The calcination of 137 
kaolin leads to the destruction of the kaolin sheet structure, creating an amorphous material, metakaolin (Al2Si2O7; 138 
CAS No. 15123-81-6) (Daou et al., 2020). The degree to which this conversion happens depends on the specifics of 139 
the heating conditions (e.g., heating rate and maximum temperature). In one study, scientists found that above 140 
550 °C only metakaolin remained (Daou et al., 2020). 141 
 142 
According to an ACA best practices guide, metakaolin produced from calcining kaolin “at a high temperature” is 143 
synthetic (Accredited Certifiers Association, 2024). Furthermore, kaolin products have a high risk of being classified 144 
as synthetic due to acid treatment (Accredited Certifiers Association, 2024). However, the ACA guidance does not 145 
specify a temperature range, nor does it distinguish between (clearly nonsynthetic) hydrous kaolin and calcined 146 
kaolin that has not been heated sufficiently to produce metakaolin. As a synthetic material, metakaolin is outside the 147 
scope of this report and is excluded from the following discussion. Further, we note that whether a given kaolin 148 
product is or is not calcined may not always be obvious to organic processors and handlers. In our limited survey of 149 
commercial kaolin products, we found that some products labeled with CAS No. 1332-58-7 (properly applied to 150 
kaolin) were described elsewhere as calcined kaolin. 151 
 152 

Evaluation Questions 153 
 154 
Evaluation Question #6: List any reported residues of heavy metals or other contaminants in excess of FDA 155 
tolerances that are present or have been reported in the petitioned substance [7 CFR 205.600(b)(5)]. 156 
The FDA establishes “action levels” for poisonous or deleterious substances that are unavoidable in human food and 157 
animal feed (US FDA, 2000). These include aflatoxin, cadmium, lead, polychlorinated biphenyls (PCBs), and many 158 
other substances. The FDA uses different action level tolerances for these substances, depending on the commodity. 159 
Commodities are largely food items; however, the FDA also includes tolerances for ceramic and metal items, such 160 
as eating vessels and utensils. Kaolin is not included on the list of commodities with action levels (US FDA, 2000).   161 
 162 
The Food Chemicals Codex specifies limits on impurities in kaolin as: 10 ppm arsenic and 10 ppm lead (United 163 
States Pharmacopeial Convention, 2008). The Food Chemicals Codex does not provide specific limit values for any 164 
additional heavy metals or contaminants in kaolin. However, the Select Committee on GRAS Substances 165 
recommended the FDA add an upper limit for cadmium for food grade kaolin (Select Committee on GRAS 166 
Substances (SCOGS), 1977). 167 
 168 
Heavy metals, especially lead and cadmium, are often present in raw, whole kaolin materials, sometimes exceeding 169 
levels regarded as safe for consumption (Bonglaisin et al., 2022; Hernández et al., 2019). We surveyed heavy metals 170 
lab reports from products composed primarily of kaolin, previously reviewed by OMRI. Amongst this limited subset 171 
of data, there were two kaolin materials that exceeded the FCC tolerances for arsenic and lead. 172 
 173 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed
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Evaluation Question #7: Discuss and summarize findings on whether the manufacture and use of the 174 
petitioned substance may be harmful to the environment or biodiversity [7 U.S.C. 6517(c)(1)(A)(i) and 175 
7 U.S.C. 6517(c)(2)(A)(i)]. 176 
Kaolin deposits occur worldwide (Kogel, 2014; Murray, 2006). As with other extractive industries, kaolin mining 177 
heavily impacts sensitive landscapes and ecosystems (Siqueira-Gay et al., 2022; Zapico et al., 2020). Impacts of 178 
kaolin manufacture on terrestrial and aquatic environments and biodiversity are discussed below. We found nothing 179 
of note concerning harmful effects of kaolin use. 180 
 181 
Effects on terrestrial environments 182 
Mining companies extract kaolin clay mainly from near-surface deposits using open-pit methods (Kogel, 2014; 183 
Schroeder, 2018). Open-pit mining heavily modifies large sections of the landscape, removing vegetation and soil 184 
and degrading the soil structure (Oliveira et al., 2022). Workers then process the raw clay either on- or off-site, 185 
leaving waste materials that may contain heavy metals and other contaminants (Jordão et al., 2002b; Nguyễn et al., 186 
2021; Silva et al., 2003; Xiao et al., 2024). 187 
 188 
Mining and quarrying inevitably damage biodiversity and ecosystem services. In terrestrial ecosystems, the soil, 189 
vegetation, and animal communities are closely interdependent, making it impossible to return degraded land to its 190 
original state (Salgueiro et al., 2020). Kaolin mining destroys the soil profile and alters soil chemistry (Lane et al., 191 
2020; Oliveira et al., 2022).5 Nguyen et al. (2021) analyzed soil samples near mining sites, including those for 192 
kaolin, and concluded that soil can be contaminated with elevated levels of trace metals that persist, including zinc, 193 
copper, and lead. 194 
 195 
Kaolin mining generates large amounts of waste materials (Palumbo-Roe & Colman, 2010; Schwanke et al., 2022). 196 
According to Palumbo-Roe & Colman (2010), kaolin clay mining in England generates about 10 million tonnes of 197 
waste per year, with a 9:1 ratio of waste to extracted kaolin clay. The waste produced is generally composed of 198 
coarse sand and rock that may either be sold as raw material or left amassed in large piles called tips. A fine slurry 199 
waste called mica residue is the other primary waste stream and it is disposed of in large lagoons and abandoned 200 
kaolin clay pits (Palumbo-Roe & Colman, 2010). Consequently, kaolin mining can alter physical landscape surfaces, 201 
creating environments that are at elevated risk of flooding, runoff, and water erosion events (Duque et al., 2015; 202 
Martín-Moreno et al., 2008; Nguyễn et al., 2021; Zapico et al., 2020). 203 
 204 
Effects on terrestrial biodiversity 205 
In terrestrial ecosystems, kaolin mining can impact biodiversity at multiple scales, both at the mining site and across 206 
regional landscapes (Sonter et al., 2018). However, most research has focused on site-level impacts of habitat loss 207 
and environmental degradation. In the northeastern Brazilian Amazon, scientists analyzed the indirect and 208 
cumulative effects of kaolin mining at a regional scale (Siqueira-Gay et al., 2022). Within their study area, the 209 
researchers found that the cumulative change in forest cover was determined by interactions between kaolin mining, 210 
other industrial mining, timber extraction, and agricultural land uses. In this way, kaolin mining contributes to the 211 
loss of critical habitat in one of the most diverse ecosystems on earth. 212 
 213 
Researchers have studied vegetative succession at kaolin mining sites in southwest England, which hosts the 214 
distinctive and diverse Atlantic lowland heath ecosystem (Lane et al., 2020). Dancer et al. (1977) reported that 215 
abandoned kaolin mines in the region often hosted a mix of invasive leguminous shrubs, which were better able to 216 
tolerate the low nitrogen and poor water-holding capacity of the sandy mining wastes. Although the scientists 217 
observed that some sites were subsequently colonized by native woodland species, the characteristic diversity and 218 
community structure of the regional heathland did not return. More recently, Lane et al. (2020) studied former 219 
kaolin mining sites at varying intervals of restoration (0, 2, 27, and 150 years). They found that even 150 years post-220 
mining, soils were lower in nutrient content and organic matter and higher in pH when compared to undisturbed 221 
heathland soils nearby. Additionally, instead of the characteristic heathland shrub species, grasslands predominated 222 
at the sites. 223 
 224 
Bacteria and fungi found in the soil rhizosphere are critical to soil functions, plant establishment, and nutrient 225 
uptake.6 Gao et al. (2024) studied the rhizosphere bacteria of three native plant species in a Chinese kaolin mine. 226 
They found that kaolin mining decreased the abundance, species richness, and functional diversity of these bacteria. 227 
Xiao et al. (2024) studied the fungal community for the same plants and sites. The fungal rhizosphere community 228 
also differed substantially between mined and unmined sites, with decreased species diversity and functional 229 

 
5 Soil profile refers to the vertical structure of a soil from the surface down to the bedrock, consisting of distinct layers called horizons that 
develop over time. 
6 The rhizosphere is the region of soil surrounding plant roots, within which the soil chemistry and microbiology are influenced by the 
interactions between roots and associated soil microorganisms. 
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diversity and altered species complements in the mined sites compared to the unmined sites. However, the effects 230 
differed among the three plant species (Xiao et al., 2024). 231 
 232 
In a kaolin mining center in the Czech Republic, saprophytic macromycetes were more abundant and diverse in 233 
unmined sites than in kaolin mining sites (Walter et al., 2024).7 Species known to colonize woody debris were 234 
notably absent from recently mined sites, although they were abundant in successional communities at abandoned 235 
quarries (Walter et al., 2023). However, parasitic and mycorrhizal fungi, which are better adapted to nutrient-poor 236 
soils, were more prevalent in actively mined sites than in unmined or abandoned sites (Walter et al., 2024). 237 
 238 
Invertebrates, such as insects and spiders, can be key indicators of ecosystem health. Walter et al. (2023, 2024) 239 
studied the abundance and diversity of arthropods at active and abandoned kaolin quarries in the Czech Republic. 240 
Among the arthropods that the scientists sampled were 21 species included on the International Union for 241 
Conservation of Nature (IUCN) Red List of Threatened Species. The scientists reported that moths and carabid 242 
beetles were more abundant and diverse in sites undisturbed by mining. However, active mining sites had a higher 243 
diversity of herbaceous plants, attracting more moths that feed on these types of plants. The researchers noted that 244 
counterintuitively, mining disturbance creates novel microhabitat islands within a forested landscape, offering 245 
secondary refuges for declining or rare species that depend on open habitats like rocky outcrops, grassland, or 246 
wetlands (Walter et al., 2023, 2024). 247 

 248 
Lastly, megafauna also suffer habitat loss from kaolin mining. Cochran et al. (1999) sampled small mammal and 249 
bird communities on successional kaolin mine sites in Georgia. Avian abundance and species richness were highest 250 
in the earlier successional sites. However, species that nest and forage in forest interiors appeared only in the older 251 
sites. A single species, the cotton rat, dominated the small mammal community on the reclaimed sites. Most of the 252 
reclaimed sites hosted a monoculture of loblolly pines, resulting in a uniform, closed canopy. The scientists 253 
concluded that these sites lacked the vegetative structure needed to sustain high avian and mammal diversity 254 
(Cochran et al., 1999). 255 
 256 
Effects on aquatic environments 257 
Open-pit kaolin mining can impact the environment and biodiversity of freshwater ecosystems in several ways. 258 
First, surrounding groundwater levels can drop due to the geomorphological changes associated with surface soil 259 
and rock removal (Anju & Jaya, 2022). Excavators also heavily alter site topography, affecting drainage networks 260 
both above and below ground (Zapico, Laronne, Sánchez Castillo, et al., 2021). Soil erosion and sedimentation 261 
around the mine are major risks (Zapico, Laronne, Meixide, et al., 2021; Zapico, Laronne, Sánchez Castillo, et al., 262 
2021). High suspended sediment loads in streams and rivers degrade downstream water quality for both wildlife and 263 
human consumption (Gordon & Palmer, 2015; Jordão et al., 2002a; Willhite et al., 2012). 264 
 265 
Second, kaolin beneficiation can introduce chemical contaminants to groundwater, surface water, and sediments 266 
(Jordão et al., 2002b). Consumers prefer bright, white kaolin. To achieve this, mining companies use large amounts 267 
of metallic zinc to chemically remove iron oxides (de Jesus & Sánchez, 2013; Silva et al., 2003). The residual zinc 268 
and iron, along with aluminum, cadmium, lead, and other metals are waste products that may contaminate 269 
groundwater and surface water (Silva et al., 2003). Mining companies also use sulfuric acid to whiten kaolin (Jordão 270 
et al., 2002b, 2002a). Consequently, mine effluents can contain high levels of sulfates and phosphates and can 271 
reduce the pH of downstream surface water, as Jordão et al. (2002a, 2002b) detected in Brazil (Jordão et al., 2002a). 272 
 273 
Effects on aquatic biodiversity 274 
Previous studies have examined the toxicity of kaolin particles to aquatic species. By analyzing the collated data 275 
from these studies, Gordon & Palmer (2015) concluded that suspended kaolin particles are not substantially 276 
dangerous to most aquatic organisms. However, most of the species studied were marine organisms. Only one 277 
freshwater organism, Daphnia magna, was included. This aquatic invertebrate suffered high mortality rates due to 278 
ingestion of kaolin particles, which block the animal’s gut, resulting in starvation (Robinson et al., 2010). 279 
Nevertheless, pure kaolinite proved much less toxic than either pure montmorillonite (a different clay mineral) or a 280 
natural clay. 281 
 282 
Kaolin appears to be more toxic to larger organisms, both within and between taxa. Salmonids and marine fish 283 
larvae are more sensitive to suspended particles than invertebrates (Gordon & Palmer, 2015). Likewise, smaller 284 
amphipods were less sensitive to kaolin exposure than larger individuals (Anderson et al., 2015). 285 

 
7 Saprophytic macromycetes are fungi that produce readily visible, long-lived fruiting bodies and subsist by decomposing biotic materials. 
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Even if toxicity is low, kaolin mining can alter freshwater aquatic biodiversity. In a kaolin mine impoundment 286 
reservoir in Brazil, phytoplankton biomass and zooplankton diversity were substantially reduced compared to 287 
similarly sized water bodies that were not impacted by mining (Moreira et al., 2016). 288 
 289 
After fully extracting kaolin from an area, mining companies may perform mine reclamation projects to restore the 290 
degraded landscape (Duque et al., 2015; Kogel, 2014; Ribeiro et al., 2021). However, ecosystems can take decades 291 
to recover after being impacted by mining. In kaolin recovery ponds in Georgia, the diversity and community 292 
composition of aquatic algae were related to the time elapsed since mining ceased (Dominy & Manoylov, 2012). 293 
The researchers found no algae in a pond sampled two months after mining. Both 2-year and 30-year ponds had 294 
diverse algal communities, but community composition differed between the sites. The 30-year pond had 295 
significantly higher diversity on average. Further, the particular species that were most predominant differed 296 
substantially between sampling dates in the 2-year pond, while the 30-year pond community was much more stable 297 
(Dominy & Manoylov, 2012). 298 
 299 
We found limited information about the fate and impact of kaolin or kaolin mining wastes that reach marine 300 
environments. In 1980, a freighter spilled 2200 tons of kaolin onto a sensitive coral reef in Hawaii (Dollar & Grigg, 301 
1981). Despite concerns of widespread ecological harm, scientists found only minor and localized impact within 50 302 
meters of both sides of the spill site. Within that area, the kaolin smothered some coral, while other detached 303 
fragments were alive but slightly bleached. The scientists surmised that, in this case, ocean currents had rapidly 304 
removed the kaolin from the area, but they emphasized that every case must be analyzed individually. 305 
 306 
Ultimately, while some taxa suffer biodiversity loss as a result of kaolin mining, others may benefit from the 307 
establishment of novel ecosystems on disturbed, successional land (Cochran et al., 1999; Jordão et al., 2002a; 308 
Salgueiro et al., 2020; Sonter et al., 2018; Walter et al., 2023). Whether the benefits for certain organisms outweigh 309 
the harm to others depends on the geographic scale, taxonomic group(s), and ecosystem parameters of interest 310 
(Walter et al., 2023, 2024). 311 
 312 
Evaluation Question #8: Describe and summarize any reported effects upon human health from use of the 313 
petitioned substance [7 U.S.C. 6517(c)(1)(A)(i), 7 U.S.C. 6517(c)(2)(A)(i) and 7 U.S.C. 6518(m)(4)]. 314 
Kaolin is Generally Recognized as Safe (GRAS) under 21 CFR 186.1256 [listed as “Clay (kaolin)”] as an indirect 315 
food ingredient, provided that it is of a purity suitable for its intended use and limited only by current good 316 
manufacturing practice. Specifically, 21 CFR 186.1256(b)(2) states that the GRAS affirmation of kaolin is based on 317 
the condition that it is used “in the manufacture of paper and paperboard that contact food.” 8 However, there are 318 
additional health considerations related to both the production and consumption of kaolin, dependent on the 319 
associated use. 320 
 321 
Clarification of fruit wines 322 
The Alcohol and Tobacco Tax and Trade Bureau (TTB), rather than the FDA, regulates the treatment of wines and 323 
some juice products. According to 27 CFR 24.243, “Inert fibers, pulps, earths, or similar materials, may be used as 324 
filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth 325 
are commonly employed inert filtering and clarifying aids. In general, there is no limitation on the use of inert 326 
materials and no records need be maintained concerning their use.” Kaolin is authorized for use to clarify and 327 
stabilize wine and juice at § 24.246 [Table 1 to Paragraph (c)], without specific limitation. 328 
 329 
Other countries that produce organic fruit wine for import into the U.S. market may have differing requirements 330 
(Awe, 2018; Minh, 2022). We found no information concerning the health implications of kaolin use as a processing 331 
aid in fruit wine. 332 
 333 

 
8 However, kaolin might also be GRAS for other uses. Under the Federal Food, Drug, and Cosmetic (FD&C) Act, manufacturers are required to 
obtain premarket approval for new uses of food additives (Gaynor & Cianci, 2006). Substances that are Generally Recognized as Safe (GRAS) 
for specific uses are excluded from the definition of a food additive under the FD&C Act (Gaynor & Cianci, 2006). As such, GRAS substances 
do not require premarket approval by the FDA for those specific GRAS uses (Gaynor & Cianci, 2006). Unlike food additive safety 
determinations, which are made by the FDA, GRAS determinations can be made by non-governmental experts (Gaynor & Cianci, 2006). In 2016, 
the FDA published an updated Final Rule on GRAS substances, which amended the rule so that the GRAS notification program was voluntary 
(81 FR 54960-55055, August 17, 2016). The notification program provides a mechanism for a company (or a person) to notify the FDA that a 
substance is GRAS. However, as the notification is now voluntary, identifying whether a substance is or is not considered GRAS by some experts 
(such as within food manufacturing businesses) may not always be possible. Furthermore, not all previous GRAS determinations are easily 
searchable. Therefore, it is possible that there are other uses for kaolin that experts would agree are GRAS. 

https://www.federalregister.gov/documents/2016/08/17/2016-19164/substances-generally-recognized-as-safe
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Ingredients in cosmetic and personal care products 334 
Kaolin is a common ingredient in cosmetics and soaps. In 2023, the Expert Panel for Cosmetic Ingredient Safety 335 
concluded that Kaolin is safe for use in cosmetic products under current industry practices and concentrations 336 
(Expert Panel for Cosmetic Ingredient Safety, 2023). 337 
 338 
Pest control in stored grains 339 
The EPA has established a tolerance exemption for kaolin residues in food when used on or in food commodities to 340 
aid in the control of insects, fungi, and bacteria (40 CFR 180.1180; 81 FR 34907) “based on the long history of use 341 
of kaolin in food and non-food products with no reported adverse effects” (US EPA, 2021). We found no further 342 
information concerning the health implications of kaolin as a pest control. 343 
 344 
Paper and paperboard for food-contact packaging 345 
Researchers are continuing to learn about the health implications of using nanokaolin in packaging, sometimes 346 
finding contradictory results. Nanokaolin is a type of nanoclay, which could be considered an incidental 347 
nanomaterial because it occurs as a byproduct of mechanical homogenization and milling (Ali et al., in press). The 348 
European Food Safety Authority (2014) concluded that kaolin particles did not migrate from a multi-layered 349 
packaging film. However, recent evidence suggests that nanokaolin particles can leach into food from 350 
nanocomposite packaging materials. In one study, nanokaolin filler particles migrated from paperboard into food 351 
simulant solutions including water, acetic acid, and aqueous ethanol (Zhang et al., 2020). After comprehensively 352 
reviewing the literature, Gmoshinski et al. (2020) recommended that nanoclays be evaluated individually, 353 
considering their structure and conditions of use. 354 
 355 
Wiemann et al. (2020) studied the effects of kaolin and bentonite nanoparticles on human immune cells and rat lung 356 
cells in vitro and concluded that kaolinite was relatively less bioactive than bentonite. 9 Kawanishi et al. (2020) 357 
evaluated genetic damage to human skin cell lines in vitro, finding that finer kaolin particles (median particle size 358 
200 nm) were more damaging than coarser particles (median particle size 4.8 μm). We found no evidence of human 359 
clinical studies involving nanokaolin exposure. 360 
 361 
Direct ingestion of kaolin 362 
Heavy metals, especially lead and cadmium, are often present in raw kaolin materials, sometimes at levels 363 
exceeding what is regarded as safe for consumption (Asowata, 2021; Bonglaisin et al., 2022). Contaminant levels 364 
vary widely among kaolin deposits around the world. Heavy metals in raw kaolin clays may pose a particular danger 365 
for individuals who practice geophagy, the deliberate consumption of soil-like materials, including clays (Asowata, 366 
2021). 367 
 368 
While researchers have detected high levels of toxic elements in geophagic clays (including kaolin), few have 369 
studied their metabolism and possible modes of toxicity (Bonglaisin et al., 2022; Gomes, 2018). Reichardt et al. 370 
(2009) fed kaolin to rats and reported that digestion of kaolin particles in the intestines, initiated by stomach acids, 371 
could allow aluminum to enter the bloodstream. Aluminum is a potential neurotoxin (Reichardt et al., 2009). The 372 
researchers also demonstrated that ingested kaolin particles can trigger cellular changes in the intestinal mucosa 373 
(Reichardt et al., 2009). 374 
 375 
Medical researchers have linked the intentional consumption of kaolin clays to the following health conditions: 376 

• iron-deficiency anemia (Attarha et al., 2021; Bonglaisin et al., 2022) 377 
• anemia during pregnancy (Babah et al., 2024) 378 
• potassium deficiency (Gonzalez et al., 1982; Ukaonu et al., 2003) 379 
• bowel obstruction and perforation (Dokoupil et al., 2019; Grigsby et al., 1999) 380 

 381 
Kaolin exposure in mining and processing 382 
Kaolin clays can contain significant amounts of radioactive elements, especially uranium and thorium, and their 383 
decay products (Conley, 1978). Kaolin samples from different locations vary considerably in the amounts of 384 
radionuclides they contain. Depending on local geology, kaolin mining and processing workers may be exposed to 385 
elevated radioactivity compared to average concentrations in soil (see Table 1). Manufacturers can remove 386 
radioactive material by gravity settling (Conley, 1978). We found no evidence of unsafe levels of radioactivity in 387 
commercial kaolin materials. 388 
 389 

 
9 In vitro indicates the study occurs in cells or tissues isolated from the living organism. 
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Table 1: Mean natural radioactivity of kaolin samples (Bq kg-1) 390 
Location Sample material Potassium-

40 
Uranium 

series 
Thorium 

series 
Reference 

Turkey Kaolin 464 82 95 (Turhan, 2009) 

Egypt Kaolin 31 64 68 (El-Mekawy et al., 2015) 

Nigeria Kaolin deposit 94 38 65 (Adagunodo et al., 2018) 

Egypt Kaolin 21 67 89 (Abd El-Halim, 2019) 

Brazil Raw kaolin clays 358 23 26 (da Silva et al., 2016) 

Brazil Commercial kaolin 
clays marketed for 
cosmetics use 

449 52 61 (da Silva et al., 2016) 

Global mean of 
natural radionuclide 
concentration 

Soil 400 35 30 (United Nations Scientific 
Committee on the Effects of 
Atomic Radiation (UNSCEAR), 
2000) 

 391 
Kaolin dust is a respiratory and eye irritant (European Chemical Agency (ECHA), 2023; National Center for 392 
Biotechnology Information (NCBI), 2024). Occupational exposure levels for kaolin are presently regulated by 393 
OSHA at 29 CFR 1910.1000 Table Z-1 (see Table 2). Chronic exposure can cause pulmonary fibrosis or 394 
pneumoconiosis (International Programme on Chemical Safety (IPCS), 2005; Wiemann et al., 2020). Kato et al. 395 
(2017) demonstrated that kaolin particles can also damage the DNA of cells lining the lungs of mice in vivo. 10 396 
Researchers have extensively studied pulmonary disease, also called kaolinosis, in kaolin workers in the United 397 
Kingdom and the Southeastern United States. However, quartz, present in the raw kaolin clay, is at least an order of 398 
magnitude more potent than refined kaolin (International Programme on Chemical Safety (IPCS), 2005). Kaolin 399 
mining and production workers were exposed to considerable amounts of airborne dust before the 1960s, but 400 
improved wet processing methods (see Background, above) and ventilation systems have substantially reduced 401 
exposure (International Programme on Chemical Safety (IPCS), 2005). 402 
 403 

Table 2: Kaolin occupational exposure limits 404 
Regulatory Body Total dust 

(Time-weighted average) 
Respiratory fraction 

(Time-weighted average) 
Reference 

NIOSH REL 10 mg/m3 5 mg/m3 (OSHA, 2021) 
OSHA PEL 15 mg/m3 5 mg/m3 (OSHA, 2021) 
CAL/OSHA PEL Not listed 2 mg/m3 (OSHA, 2021) 
EC OEL Not listed 2 mg/m3 (INCHEM, 2016) 

 405 
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