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List of Allowed and Prohibited Substances (National List). 

Any person may submit a petition to have a substance evaluated by the National 

Organic Standards Board (7 CFR 205.607(a)). 
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Carbon Dioxide 
Crops 

1 
2 Identification of Petitioned Substance 
3 
4 Chemical Names: 
5 CO2; carbon dioxide; carbonic acid anhydride; 
6 carbonic anhydride; dioxomethane; 
7 methanedione 
8 
9 Other Name: 

10 carbonic acid gas; dry ice 
11 
12 Trade Names: 
13 CO2; carbon dioxide 
23 

14 
15 CAS Number: 
16 124-38-9 
17 
18 Other Codes: 
19 EC number: 204-696-9 
20 NIOSH RTECS number: FF6400000 
21 UNII: 142M471B3J 
22 EPA PC code: 016601 

24 Summary of Petitioned Use 
25 
26 Carbon dioxide was petitioned in 2020 for inclusion on the National List of Allowed and Prohibited 
27 Substances, hereafter referred to as the National List, for use as a plant or soil amendment. This full scope 
28 technical report serves to provide the National Organic Standards Board (NOSB) with technical 
29 information to support the review of the petition to add carbon dioxide to 7 CFR 205.601(j). This report 
30 focuses on uses of carbon dioxide in organic crop production as a plant or soil amendment. In addition to 
31 the evaluation questions included in the report template, the NOSB Crops Subcommittee requested a 
32 focus question: 
33 
34 Describe the use frequency and application rates of all application methods, including in greenhouses and others. 
35 
36 The same petition requested the addition of carbon dioxide to 7 CFR 205.601(a) of the National List for 
37 use as an algicide, disinfectant, and sanitizer, including uses in irrigation systems, to acidify irrigation 
38 water (Eco2Mix, Inc., 2020). Sources of irrigation water tend to be alkaline in some areas, which may 
39 inhibit plant nutrient uptake and lead to the formation of mineral scale in equipment (NOP, 2014b). In 
40 2022, the NOSB recommended to the National Organic Program (NOP) to add carbon dioxide to 
41 § 205.601(a), but at the time of this writing the NOP has not taken regulatory action (NOSB, 2022). The 
42 NOSB made their recommendation without a technical report. The NOSB has requested this technical 
43 report to address the sections of the petition requesting the addition of carbon dioxide to § 205.601(j), as a 
44 plant or soil amendment, before making a second recommendation (NOSB, 2022). 
45 
46 This report explores the use of gaseous carbon dioxide in indoor crop production as an atmospheric 
47 enrichment substance, as well as the fertilization and soil amending effects resulting from dissolved 
48 carbon dioxide in irrigation water. Although the petition does not specifically discuss the use of carbon 
49 dioxide for atmospheric enrichment in greenhouses, this is the most prevalent use of the material in 
50 agriculture. For the sake of thoroughness and in response to the NOSB’s requested focus question, this 
51 report describes all potential uses of carbon dioxide including gaseous, dissolved for use as a soil 
52 amendment, and as a pH adjuster in irrigation systems. 
53 
54 Characterization of Petitioned Substance 
55 
56 Composition of the Substance: 
57 Carbon dioxide is composed of one carbon atom and two oxygen atoms with the molecular formula CO2 

58 (National Center for Biotechnology Information, 2023). Each oxygen atom is bonded to the central carbon 
59 atom with double covalent bonds in a linear configuration (National Research Council (US), 2001; 
60 Patnaik, 2003). See Figure 1 for a visual representation of the molecule. 
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Figure 1: Molecular structure of CO2 

Throughout this report, carbon dioxide will be referred to as CO2. 

Source or Origin of the Substance: 
CO2 results from the oxidation of carbon and occurs ubiquitously in the environment and throughout the 
solar system (National Center for Biotechnology Information, 2023; Patnaik, 2003). Currently, the average 
carbon dioxide concentration in Earth’s atmosphere is approximately 420 parts per million (ppm), or 
0.042%, but has been steadily increasing since the beginning of the industrial revolution (NOAA, 2022). 

Carbon dioxide forms from a variety of different chemical and biological processes, including (National 
Center for Biotechnology Information, 2023; Patnaik, 2003): 

• respiration by microbes, fungi, and animals 
• the combustion or decomposition of carbon-based substances, and 
• volcanic eruptions or other geological processes 

Volcanic processes release just 1% compared to the amount of carbon dioxide released by humans (Steen, 
2006). Though the annual carbon dioxide output of volcanoes is highly variable, on average humans emit 
as much carbon dioxide in 2-3 days as volcanic processes emit in one year (Gerlach, 2011). Plants utilize 
carbon dioxide in photosynthesis and rely on the substance for their survival (National Center for 
Biotechnology Information, 2023; Patnaik, 2003). 

CO2 is the end product of all combustion processes, chemical (as in the burning or thermal decomposition 
of organic matter), and biological (as in digestion of carbohydrates for energy) (Aresta et al., 2013). 
Commercial production of CO2 occurs by several different methods, including burning carbon-based fuel, 
reactions between acids and bicarbonate salts, extraction from exhaust gases resulting from a variety of 
industries, alcohol production, beer fermentation, and direct extraction from wells (Chapel & Mariz, 1999; 
Steen, 2006). See Evaluation Question #2 for detailed manufacturing information. 

Properties of the Substance: 
At normal atmospheric pressures and temperatures, CO2 occurs as a mostly odorless, colorless, and 
tasteless gas. It is denser than air. CO2 is the most often cited and recognized greenhouse gas and the 
largest contributing factor to global climate change (National Center for Biotechnology Information, 2023; 
Patnaik, 2003). 

CO2 is moderately soluble in water. Solubility increases with increasing pressure and decreases with 
increasing temperature (Patnaik, 2003). When dissolved, CO2 forms small amounts of carbonic acid 
(H2CO3) in solution and is defined as a weak acid in this form (Häring (Ed.), 2007; National Center for 
Biotechnology Information, 2023). No matter the temperature, CO2 will never exist as a liquid at 
atmospheric pressure, but will solidify into dry ice upon cooling (Patnaik, 2003). Dry ice directly sublimes 
back to gas with increasing temperature (Patnaik, 2003; Scott et al., 2009). By controlling pressure, 
however, CO2 is easily converted into a liquid which is the most common commercial form (Häring (Ed.), 
2007). See Figure 2 for a visual representation of the phase changes for CO2 based on relative temperature 
and pressure. 

CO2 is very stable in the atmosphere, and typically requires significant energy input to react or break 
down due to it being fully oxidized (National Research Council (US), 2001; Steen, 2006). 
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110 
111 Figure 2: Phase changes in CO2. Adapted from Bauer et al. (2013) 
112 
113 Table 1 describes some chemical and physical properties of CO2 at atmospheric temperature and pressure 
114 (ATP). 
115 
116 Table 1: Chemical and physical properties of CO2 

Property Value 
Physical State and Appearance Gas 
Odor Odorless 
Taste Tasteless 
Color Colorless; white as frozen solid 
Molecular Weight (g/mol) 44.009 
Density (g/L) 1.799 
pH 3.7 
Solubility (mL/100 mL water, 20°C) 88 (increases with pressure) 
Boiling Point (°C) -78.464 (sublimes) 
Melting Point (°C) n/a; sublimes directly to gas from solid at ATP 
Critical Temperature (°C) 31 
Vapor Pressure (atm) 56.5 
Stability Stable 
Reactivity Metal dusts may ignite in CO2 atmosphere. Forms 

carbonic acid in water. 
117 Sources: (National Center for Biotechnology Information, 2023; Patnaik, 2003) 
118 
119 CO2 plays an essential role in the process known as the carbonic acid system, which largely governs the 
120 pH of soils and aquatic environments (Drever, 1997). In contact with water, a proportion of CO2 dissolves 
121 until equilibrium is reached between CO2, bicarbonate (HCO3-), carbonate (CO32-), and carbonic acid 
122 (H2CO3) (Drever, 1997). A greater proportion of CO2 shifts the equilibrium to the formation of carbonic 
123 acid resulting in lower pH (Drever, 1997). Greater carbonate concentration shifts the equilibrium in the 
124 other direction, resulting in higher pH (Drever, 1997). Due to the high ratio of carbonates in many surface 
125 environments (such as calcium carbonate limestone), the pH of irrigation water is often elevated (greater 
126 than 7) (Albano et al., 2017). Below a pH of 6, the majority of the inorganic carbon species are in the form 
127 of solvated CO2 (molecular CO2 surrounded by water molecules) or carbonic acid (Drever, 1997). The 
128 acidic hydrogen ions contributed by carbonic acid work to neutralize alkalinity and lower pH, but they 
129 also react with carbonates to produce alkaline bicarbonate ions. This leads to a buffered system, meaning 
130 that it resists a precipitous drop in pH and becomes relatively stable (Drever, 1997). Figure 3 illustrates 
131 the relation of inorganic carbon species concentrations to pH. 
132 
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133 
134 Figure 3: Concentration of carbonate species as a function of pH, assuming the concentration of dissolved CO2 is 

10-2 at 25°C. The units are considered irrelevant, and the assumption is that the CO2 will be almost wholly carbonic 
136 acid (H2CO3) at acidic pH. At pH 6.4, carbonic acid and bicarbonate (HCO3-) concentrations are roughly equal. At 
137 pH 10.33, bicarbonate and carbonate (CO32-) concentrations are roughly equal. Adapted from Drever (1997). 
138 
139 Specific Uses of the Substance: 

Atmospheric adjustment in indoor production 
141 Greenhouse farmers frequently employ gaseous CO2 to reach optimal atmospheric levels for plant 
142 growth. 
143 
144 Ambient air contains 350-450 ppm CO2, while the optimal concentration of CO2 for plant growth in a 

greenhouse environment is 800-1000 ppm (Poudel & Dunn, 2017; Thomson et al., 2022; Wang et al., 2022). 
146 As plants grow, they metabolize CO2 in the air of the greenhouse, depleting it (Wang et al., 2022). Plants 
147 consume CO2 at greater rates during midday, resulting in daytime concentrations of typically just 100-250 
148 ppm (Jin et al., 2009; Thomson et al., 2022). Due to design, exchange of air between the inside and outside 
149 of a greenhouse is limited in order to regulate the internal temperature of the building (Wang et al., 2022). 

To allow indoor CO2 levels to increase back to outdoor concentration, venting is required, which 
151 simultaneously impacts the controlled temperatures in the greenhouse (Thomson et al., 2022). Ventilation 
152 alone cannot maintain constant CO2 concentrations within the greenhouse at a level comparable to that 
153 outside the greenhouse, however (Wang et al., 2022). Natural turnover of air by venting may help to 
154 moderate CO2 levels during warm months, but venting is usually not practical during colder periods or 

in colder regions, and supplementation by other methods may be advisable (Poudel & Dunn, 2017; 
156 Thomson et al., 2022; Wang et al., 2022). 
157 
158 CO2 replenishment and enrichment in greenhouse settings may involve one or more of the following 
159 (Poudel & Dunn, 2017; Thomson et al., 2022): 

• Combustion of biomass and injection of flue gas 
161 • Use of natural gas or propane burners 
162 • Injection of commercial gas from compressed tanks 
163 • Controlled decomposition, fermentation, or composting 
164 • Chemical neutralization reactions 

166 CO2 can be a limiting nutrient for plants in a greenhouse (Wang et al., 2022). C3 plants like tomatoes and 
167 cucumbers are especially sensitive to CO2 concentrations, and they generally show the greatest response 
168 to enrichment when compared to the other plant types (Ahammed & Yu, 2023; Wang et al., 2022). 
169 However, some studies involving perennial grasses have shown that CO2 enrichment yields greater 

biomass increases in some C4 plants with very long lifespans, but only after several years of growth, 
171 while long-lived C3 plants stop responding to the enrichment over time (Ahammed & Yu, 2023).1 Since 

1 Examples of common agricultural C4 plants include corn, sorghum, sugarcane, and millet. 
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172 most studies are conducted on short timescales, the consensus that C3 plants respond more dramatically 
173 to elevated CO2 may be skewed (Ahammed & Yu, 2023). See Inset 1 for a brief introduction to C3, C4, and 
174 CAM plant types and their respective metabolic pathways. 
175 
176 Increasing CO2 beyond ambient air concentration (up to approximately 1000 ppm) can increase yields 
177 and increase the content of some nutrients in leafy, fruit, and root vegetables 10-60% (Wang et al., 2022). 
178 Therefore, supplemental sources of CO2 are used for enrichment (Wang et al., 2022). 
179 
180 Enrichment does not always need to occur constantly because carbon assimilation by plants is highest in 
181 the morning (Wang et al., 2022). However, plants vary in their responses to periodic CO2 enrichment. 
182 Some plants may yield more edible biomass under periodic enrichment, while others (such as cotton, 
183 wheat, chrysanthemums, soybeans, tomatoes, wheat, and rice) may grow better with constant enrichment 
184 (Kimball, 2016; Wang et al., 2022). In a meta-analysis of the available literature on open air CO2 

185 enrichment, Kimball (2016) states that definitive experiments need to be designed to identify those plants 
186 that may respond more positively to pulsed, or periodic, CO2 enrichment. 
187 
188 Producers may enrich CO2 at 1000-1200 ppm in order to increase yield and cause plants to mature earlier 
189 (Ampim et al., 2022). Ampim et al. (2022) found such levels to increase red lettuce yield by 30%, while 
190 also increasing levels of some nutritive compounds, such as flavonoids, caffeic acid, and sugars. 
191 However, CO2 enrichment negatively affected the growth of lettuce inoculated with arbuscular 
192 mycorrhizal fungi. Elevated levels of CO2 caused these fungi-inoculated lettuce plants to consume more 
193 sugars for shoot growth and to promote mycorrhizal colonization instead of leaf production. CO2 

194 enrichment does not universally improve nutrient levels in crops. In tomatoes for example, elevated CO2 

195 levels can cause a decrease in crude protein, vitamin C, organic acids, and fat (Ampim et al., 2022). 
196 
197 Enrichment with gaseous CO2 may be expensive for producers. The combination of potential CO2 sources 
198 such as boilers, gas burners, purified CO2 tanks, and the associated heating and exhaust gas 
199 infrastructure may exceed roughly $200,000 a year for 10 acres of greenhouse space in the European 
200 market (Ahammed & Yu, 2023). A large proportion of this cost is attributed to fuel costs for necessary 
201 heating. While it may be more economical to introduce dissolved CO2 in a liquid amendment to the root 
202 zone, this method is far less efficient and requires extreme care and control of all other factors, including 
203 CO2 concentration, light irradiance level, temperature, pH, and salinity level (Ahammed & Yu, 2023). 
204 
205 Beginning in the 1980s, the U.S. Department of Energy (DOE) began conducting experiments in a variety 
206 of biomes around the country to help understand the long-term consequences of anthropogenic CO2 

207 emissions on plant growth, soils, and the carbon cycle in general. The experiments ranged from small 
208 CO2-enriched chambers over ground cover plants, to CO2 fumigation of entire stands of open-air 
209 hardwood forest. U.S. DOE published the summarized results of the studies in 2020 in the U.S. 
210 Department of Energy Free-Air CO2 Enrichment Experiments: FACE Results, Lessons, and Legacy report 
211 (US DOE, 2020). Though the data collected is largely focused on environmental impact, some experiments 
212 focused on effects of CO2-enrichment (550 ppm) on various agriculturally important plants. Table 2 
213 summarizes some crop yield responses observed in the studies (Kimball, 2016; US DOE, 2020). 
214 
215 Table 2: Forage and food crop responses to elevated CO2 concentration (550 ppm) observed in Free-Air CO2 
216 Enrichment (FACE) studies. 

Plant type and crop Yield responses 
Ryegrass • 10% increase under sufficient nitrogen and water 

• no increase under limited nitrogen 
Wheat, rice, and barley • approximately 19% increase under sufficient nitrogen and water 

• 16% increase under limited nitrogen 
• 22% increase under limited water 

Soybean, pea, peanut, and common 
bean 

• average 16% increase 

Sorghum and maize • slight decrease under sufficient nitrogen and water 
• 30% increase under limited water conditions 

June 9, 2023, Page 5 of 50 
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Plant type and crop Yield responses 
Potato tuber • approximately 27% increase 
Sugar beet • approximately 9% increase under sufficient nitrogen 

• 15% increase under limited nitrogen 
Clover • 24% increase at both sufficient and limited nitrogen 
Cotton (full boll) • 38% increase at sufficient nitrogen and water 

• slightly higher than 38% increase under limited water 
Cotton (lint only) • approximately 55% increase 
Grape • approximately 28% increase 
Coffee • approximately 13% increase 

217218 

219 
220 Inset 1: C3, C4, and CAM plants and their utilization of CO2. 
221 Sources: (Nobel, 1991; Rogers et al., 1997) 
222 
223 Dissolved in irrigation water 
224 Crop producers may dissolve CO2 in irrigation water by injecting it into irrigation lines, though available 
225 literature suggests this practice is rarer than atmospheric enrichment and less research has been devoted 
226 to it. According to the petition (Eco2Mix, Inc., 2020) and the available literature on the topic, producers 
227 may choose to apply CO2-enriched irrigation water for two primary reasons: 
228 • As a carbon source for photosynthetic processes or for secondary indirect plant/soil amendment 
229 effects 
230 • As a pH reducing agent to adjust the growing medium for plants (soil environment or 
231 hydroponic system) or to help dissolve limescale in equipment resulting from water with high 
232 alkalinity 

All plants do not photosynthesize in the same way and plants utilize CO2 in different ways to produce their food. 
Three different types of plants are defined by the three different biochemical pathways responsible for 
photosynthesis. These three plant types are known as C3, C4, and CAM (or crassulacean acid metabolism) and 
each type primarily fixes CO2 differently from the air. 

C3 plants are the most common and have the simplest CO2 fixation process of the three. C3 plants utilize CO2 to 
form two 3-carbon compounds in the chloroplast, hence they are referred to as C3. C4 plants incorporate the CO2 

into a 4-carbon compound first, but via a more complex pathway. The 4-carbon compound is enzymatically 
transformed, and a carboxyl group is released (decarboxylation), liberating CO2 and leading to localized high 
concentrations. The plant then utilizes CO2 in a manner similar to the C3 pathway. 

Unlike with C3 and C4 plants, CAM plants uptake gaseous CO2 predominately at night, closing their stomata 
during the day to conserve water. This CO2 is stored in cell vacuoles overnight and converted into a 4-carbon 
compound that is released the next day. Upon release, the compound is decarboxylated, releasing the CO2 for use 
in the same endpoints of the C3 and C4 plant pathways. 

In the simplest terms, C4 and CAM plants evolved a method to compartmentalize, concentrate, and store CO2 for 
more efficient usage while conserving water. The concentration of CO2 in C4 plant tissues (1500 ppm or more) is 
typically higher than ambient outdoor concentration (350-450 ppm) and higher than that found in C3 plants (260-
290 ppm). In CAM plants, the CO2 concentration is dramatically higher (5000 ppm or more) than in C4 plants. 
From an energy expenditure standpoint, C4 plants are most efficient at utilizing CO2, CAM plants are next, and C3 

plants are the least efficient. However, in the midst of increasing atmospheric CO2 levels, the efficiency of the C3 

pathway is expected to increase with it. Similarly, C3 plants react more positively to elevated CO2 concentrations 
in indoor production facilities. 

Examples of the abundant C3 plant group include the majority of agricultural crops like cereal grains, legumes, 
trees, and many grasses and leafy greens. C4 plants are far rarer in agricultural settings, especially greenhouses, 
and include sugarcane, corn, and sorghum. Rarely, CAM plants are grown agriculturally; most CAM plants are 
adapted to hot climates and include cacti, pineapples, and orchids. 

Of the 150 most cultivated edible agricultural species, only 10 are defined as C4 plants and two are defined as 
CAM plants (prickly pear cactus and pineapple). However, despite the fact that few CAM plants are grown 
agriculturally and the majority (8 of 10) of the most damaging agricultural weeds are C4 plants, CAM plants 
actually exist in greater numbers than C4 plants from a species perspective. 
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233 
234 In a literature comparison, Enoch and Oleson (1993) explored historical studies on CO2-enriched 
235 irrigation water dating back to the 1800s. The authors state that significant research was conducted on the 
236 topic of enriching water with CO2 throughout the 1800s and into the early 20th century, but this work was 
237 not consulted in later experiments conducted following World War II and into the latter part of the 
238 century. Their paper on the topic was included in the 2020 petition to add CO2 to the National List. The 
239 literature review for this technical report found little published modern research on this topic compared 

to CO2’s use as an atmospheric amendment for indoor crop production. Enoch and Oleson (1993) 
241 reported a 2.9% crop yield increase in their statistical analysis of the available published and unpublished 
242 literature regarding irrigating crops with CO2-enriched water. The authors also reported atmospheric 
243 CO2 in greenhouse tests at slightly elevated levels above control environments, indicating CO2 escapes 
244 from the water (Enoch & Olesen, 1993). The benefits of CO2-enriched irrigation water may partially just 
245 be a result of this unintended atmospheric addition (Cramer et al., 2001; Enoch & Olesen, 1993). 
246 
247 Enoch and Oleson (1993) hypothesize that the modest 2.9% yield increases seen in their literature analysis 
248 of studies exploring CO2-enriched water were not the result of increased carbon uptake through roots. 
249 Instead, elevated soil CO2 derived from enriched water led to positive impacts to nitrifying bacteria, thus 

resulting in greater available nitrogen for plants (Enoch & Olesen, 1993). Additionally, they hypothesize 
251 that the pH reduction resulting from carbonic acid in the CO2-enriched water leads to greater dissolution 
252 of mineral nutrients, freeing them for plant use (Enoch & Olesen, 1993). The authors also found studies 
253 indicating that CO2 may mimic plant hormones like ethylene, but later studies indicate that elevated CO2 

254 increases or alters plant hormone production rather than acting itself as a hormone (Ahammed & Yu, 
255 2023; Gamage et al., 2018; Seneweera et al., 2003). 
256 
257 Other researchers have explored how nutrient availability is affected by pH and alkalinity reduction of 
258 irrigation water. Albano et al. (2017) observed an increase in concentrations of soil dissolved calcium, 
259 manganese, and zinc when irrigating with alkaline well water adjusted with sulfuric acid to pH 6.4, and 

further increases in plant available nutrients after adjustment to pH 4.8. Morgan and Graham (2019) 
261 reported the same dissolved nutrient increases, along with magnesium, in soil adjusted to pH below 6 
262 using sulfuric acid. Xiang et al. (2009) reported an increase in rice leaf concentrations of zinc, phosphorus, 
263 potassium, sulfur, aluminum, and copper after soil acidification. 
264 
265 Compared to the available research into the pH adjustment of irrigation water with strong mineral acids 
266 like sulfuric, nitric, and phosphoric acids, studies involving CO2 injection as an acidifier are rare (Branco 
267 et al., 2007; Lampreave et al., 2022). The majority of the literature dates back to the 1980s-90s; more 
268 modern agricultural science journals contain limited data. In a recent study, Lampreave et al. (2022) 
269 showed that irrigating grapes grown in calcareous (alkaline) soils with water containing 400 ppm CO2 

improved the availability of nutrients and reduced the incidence of chlorosis due to iron deficiency. The 
271 authors suggest this could reduce the use of synthetic iron chelate inputs like iron EDTA in European 
272 vineyards (Lampreave et al., 2022). 
273 
274 Two relatively modern studies were located from Brazil that required translation from the original 
275 Portuguese. Branco et al. (2007) found that CO2-enriched irrigation water does not affect the absorption of 
276 nitrogen by tomatoes; Kano et al. (2013) reported greater concentrations of manganese and zinc in plant 
277 tissues when irrigating melon with CO2-enriched water. Mauney and Hendrix (1988) reported the same 
278 zinc and manganese uptake increase when using CO2-enriched water on cotton in an older study.2 Other 
279 studies from the same general time period indicate no plant tissue nutrient concentration differences 

following irrigation with CO2-enriched water in cucumber and tomato (Hartz & Holt, 1991) or in bell 
281 pepper (Storlie & Heckman, 1996). 
282 
283 The concentration of CO2 in the root zone of plants is already generally over 10 times greater than in the 
284 atmosphere due to plant respiration and microbiological activity (Ahammed & Yu, 2023; Shimono et al., 

2The authors also demonstrated that none of the carbon fixed by photosynthesis came from the CO2-enriched irrigation water 
treatment using carbon isotope analysis methods (Mauney & Hendrix, 1988). 
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2019). The proportion of CO2 absorbed through roots for use in photosynthetic processes is less than 1% 
and CO2-enriched water is generally impractical for this use (Cramer et al., 2001; Enoch & Olesen, 1993; 
Ford et al., 2007; Mauney & Hendrix, 1988). Cramer et al. (2001) tested CO2-enriched water as well as 
gaseous fumigation of CO2 to the root zone of greenhouse tomatoes, and determined that any quality or 
yield increases were not economically significant. 

CO2 may also be used as an alternative to citric acid or sulfur burners to prevent clogging in irrigation 
lines due to limescale deposition or algae, particularly in drip emitters (NOSB, 2022). Acidification of 
irrigation water can prevent mineral or algal buildup in equipment, and this use has already been 
discussed by the NOSB and recommended as an allowed use in organic production (NOSB, 2022). 

Other uses 
CO2 may be used in insecticidal post-harvest applications in controlled atmosphere storage of 
agricultural commodities and is exempt from the requirement of a tolerance by the EPA at 
40 CFR 180.1049 for this use. 

CO2 has numerous non-agricultural uses including, but not limited to (Grand View Research, 2022; 
Patnaik, 2003): 

• Beverage carbonation. 
• In food packaging as air replacement. 
• Food chilling and freezing. 
• Various medical and surgical applications, including pharmaceutical production. 
• Chemical, fuel, and building material manufacture. 
• Crude oil recovery processes. 
• In aerosol propellants. 
• In fire control products. 
• As shielding gas for welding. 
• As an extractant of organic compounds (when used as a supercritical fluid). 

The chemical industry uses a significant amount of CO2 (about 200 million metric tons, MMT, per year) as 
a precursor in the production of fertilizers, carbonate chemicals, fuels, and medicines, but this amount is 
dwarfed by total human emissions into the atmosphere (nearly 38 billion metric tons per year and 
increasing) (Aresta et al., 2013; Crippa et al., 2022). Significant research is being conducted to repurpose 
emitted CO2 (spent carbon) into products (working carbon) (Aresta et al., 2013). 

Approved Legal Uses of the Substance: 
Synthetic CO2 is included on the USDA NOP National List of Allowed and Prohibited Substances at 
7 CFR 205.605(b)(10) without limiting annotation as an allowed ingredient in processed products labeled 
as “organic” or “made with organic (specified ingredients or food group(s)).” 

CO2 is exempt from the requirement of a tolerance when used as an insecticide after harvest in modified 
atmospheres for stored insect control on food commodities at 40 CFR 180.1049. CO2 is also exempt from 
the requirement of a tolerance when used as an inert propellant in pre- or post-harvest pesticide 
formulations, and when applied to animals in pesticide formulations at 40 CFR 180.910 and § 180.930, 
respectively. It is classified as List 4A, a minimal risk inert ingredient, in the obsolete 2004 EPA List 4 (US 
EPA, 2004), permitting it as an inert ingredient in pesticides used in organic crop and livestock 
production by 7 CFR 205.601(m)(1) and § 205.603(e)(1). EPA-registered labels describe many uses, 
including as an insect fumigant for trucks, trailers, silos, ships, and railroad cars; for invasive carp 
deterrence or for injection under ice in waterways as a lethal control for nuisance species; as an 
insecticide, acaricide, and rodenticide for burrowing pests in agricultural environments; and for indoor 
residential insect control (bed bugs and cockroaches) (EPA, 2016). 
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CO2 is classified as “Generally Recognized as Safe” (GRAS) by the U.S. Food and Drug Administration 
(FDA) at 21 CFR 184.1240, with no limitations for food use other than good manufacturing practices as a 
leavening agent, processing aid, propellant, and aerating agent. 

Action of the Substance: 
CO2 affects plant growth in myriad ways. In the most general terms, CO2 increases photosynthesis rates, 
thereby increasing growth and yield. It also stimulates root growth and earlier flowering, reduces bud 
abortion, improves stem strength, increases flower size, alters nutrient uptake rates, affects the 
colonization of symbiotic and pathogenic microbial species on plant roots, and alters overall plant shape 
(Albano et al., 2017; Gamage et al., 2018; Ontario Ministry of Agriculture, Food and Rural Affairs, 2002; 
Rogers et al., 1997; Seneweera et al., 2003). 

Significant research is underway to predict how plants will react to increasing atmospheric CO2 as a 
result of anthropogenic emissions. See the comprehensive reference list contained in the U.S. DOE Free-
Air CO2 Enrichment report for further information about completed or ongoing studies (US DOE, 2020). 
While these data are only indirectly related to purposeful air enrichment in indoor production facilities, 
the research can be useful here to describe the mode of action of CO2 in plant growth. 

Role in photosynthesis 
Photosynthesis is catalyzed by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, typically 
referred to by the abbreviation “Rubisco” (Gamage et al., 2018). Rubisco reacts with CO2 or oxygen (O2) 
depending on the ratio between the two gases; at higher CO2 levels, photosynthesis is favored and at 
higher O2 levels, photorespiration is favored. Photorespiration essentially wastes the potential energy 
involved in the photosynthesis process. At atmospheric CO2 levels, the efficiency of carboxylation by 
Rubisco (the mechanism by which plants convert energy through photosynthesis) is low. Increasing the 
CO2 concentration thereby promotes the efficiency of photosynthesis and the ability of plants to convert 
light energy into chemical energy. Photosynthesis approximately doubles when CO2 concentrations are 
doubled (Gamage et al., 2018). 

Plants are always in a CO2-deficient state without supplementation because they absorb more CO2 during 
photosynthesis than they emit during photorespiration (Poudel & Dunn, 2017). Photosynthetic processes 
do not infinitely increase with increasing CO2 levels, however. Since photosynthesis requires CO2 and 
light to proceed, plants may reach a CO2 saturation point where they cannot photosynthesize any more 
under given light conditions (Poudel & Dunn, 2017). Plants may also adapt to elevated CO2 levels in a 
phenomenon known as “photosynthetic acclimation,” during which the positive response to elevated 
CO2 becomes less pronounced over time (Ahammed & Yu, 2023; Gamage et al., 2018). Photosynthetic 
acclimation is a complex system that is not fully resolved, but is likely the result of a nitrogen assimilation 
suppression mechanism at elevated CO2 levels, and is apparent in determinate plant varieties (Ahammed 
& Yu, 2023; Gamage et al., 2018). CO2 also induces toxicity in plants at concentrations above 
approximately 1,800 ppm (Poudel & Dunn, 2017). 

Effects on other cellular processes 
Stomata, the pores in plant tissues that regulate the exchange of gases between the atmosphere and plant 
cells, are affected by CO2 concentration (Ahammed & Yu, 2023; Gamage et al., 2018; Z. Xu et al., 2016). In 
general, elevated CO2 levels lower the stomatal conductance, or the rate at which gases are exchanged, 
thereby reducing the rate at which CO2 is absorbed (Z. Xu et al., 2016). This works against the 
photosynthetic increase described above. However, the reduction in stomatal conductance also leads to 
conservation of water in plant tissue, reducing water loss due to evapotranspiration and benefiting plant 
growth through increased water use efficiency (Rogers et al., 1997; Z. Xu et al., 2016). As a result, CO2 

enrichment may help mitigate drought conditions or minimize their effects (Ahammed & Yu, 2023; US 
DOE, 2020). 

The reduction in evapotranspiration also works to reduce the cooling effect on leaves resulting from 
evaporation, leading to local temperature increases near plant canopies (Kimball, 2016). The processes by 
which stomata are affected by elevated CO2 are numerous and biologically complex, involving gene 
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392 expression, ion concentration in various plant cell types, hormonal alterations, enzyme activation, and 
393 protein repression (Ahammed & Yu, 2023; Gamage et al., 2018; Z. Xu et al., 2016). 
394 
395 Increased photosynthesis leads to increased sugar production and increased transport of sugars for the 
396 development of new tissue (Gamage et al., 2018). Certain enzymes that regulate sugar production and 
397 transport also increase under elevated CO2 levels, which prevents photosynthesis-inhibiting starches 
398 from building up in leaf tissue. The same increase in carbohydrate sugar production leads to lower 
399 nitrogen concentration in some plant parts. While the precise mechanism at work here is not fully 
400 understood, the most likely explanation is a reduction in nitrate assimilation, or the process by which 
401 plants convert nitrate into ammonia and ultimately organic nitrogen compounds. Plants under elevated 
402 CO2 levels exhibit increased carbon to nitrogen ratio in tissue as a result (Gamage et al., 2018). 
403 
404 Increased carbon to nitrogen ratio in elevated CO2 environments may explain the observed trend of 
405 young plants undergoing a burst of rapid growth, followed by slower growth after becoming established 
406 (Gamage et al., 2018). Due to rapid growth improvements following CO2 supplementation, plants utilize 
407 a larger volume of nutrients and may exhibit deficiencies, particularly of nitrogen, or micronutrients like 
408 zinc, iron, or boron (Gamage et al., 2018; Poudel & Dunn, 2017). Soil fertilization may then be required to 
409 sustain increased growth rates initiated by CO2 supplementation (Poudel & Dunn, 2017). 
410 
411 Elevated CO2 results in a general increase in cell wall division and a shortening of the overall duration of 
412 cell division, enhancing early growth (Gamage et al., 2018). The genes encoding for cell wall loosening 
413 enzymes are up-regulated, allowing more rapid tissue growth (Gamage et al., 2018). Plant hormones like 
414 ethylene, auxins, gibberellins, and cytokinins also appear to increase, contributing to accelerated cell 
415 division, bud development, and earlier flowering (Gamage et al., 2018; Seneweera et al., 2003). These 
416 growth pattern effects combine to alter plant morphology under elevated CO2 (Gamage et al., 2018; 
417 Seneweera et al., 2003). Leaf number, thickness, area, and overall plant canopy size often increase 
418 (Gamage et al., 2018). One study found the number of rice grains per head substantially increased under 
419 elevated CO2 (Seneweera et al., 2003). The report also noted observations of increased branching in trees 
420 (Seneweera et al., 2003). 
421 
422 See Figures 4 and 5 for diagrammatical summaries of plant growth effects resulting from elevated 
423 atmospheric CO2 levels. 
424 

425 
426 Figure 4: Effect of elevated CO2 on photosynthesis and stomatal conductance on plant growth. The green oval 
427 represents a chloroplast, and the orange rectangles represent guard cells. Adapted from Gamage et al. (2018). 
428 
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Figure 5: Effect of elevated CO2 on other cellular processes and plant growth. Adapted from Gamage et al. (2018). 

As discussed under Specific Uses of the Substance above, CO2-enriched irrigation water may also be 
applied, and the beneficial effects to plant growth are largely unrelated to photosynthesis. The small 
percentage (<1%) of the total CO2 absorbed by roots and ultimately used in photosynthetic processes may 
actually be a secondary indirect CO2 utilization (Shimono et al., 2019). At low soil pH (5.6-6.1), CO2 may 
move into the plant xylem, but it is rapidly respired back to the atmosphere, where some may actually be 
reabsorbed for use in photosynthesis (Ford et al., 2007; Shimono et al., 2019). However, plant roots also 
have the ability to absorb bicarbonate ion, HCO3-, through their roots and use it similarly to CO2 (He et 
al., 2007). Bicarbonate ion is more favored between a pH range of 6.36-10.33. The pH of the system is the 
determining factor in the predominant available carbonate type, and questions remain about how this 
complex system may affect plant growth (Ahammed & Yu, 2023). 

The equilibria between CO2, carbonate ion, bicarbonate ion, and carbonic acid in a liquid continually shift 
depending on environmental factors (Adamczyk et al., 2009; Drever, 1997). At normal atmospheric 
temperatures and pressures, a solution of these dissolved ions reaches a slightly acidic pH of 
approximately 5.7. This is kept mostly stable (buffered) by equilibrium forces even after further acid 
addition, unlike with strong mineral acids (Adamczyk et al., 2009). See Properties of the Substance above for 
a more detailed description of the complex carbonic acid cycle. 

As described above, plants may experience a lull in photosynthesis at midday, when both temperature 
and light are at a maximum, as a result of stomata closure. He et al. (2007) showed that uptake of root 
zone CO2 or bicarbonate ion may activate in lettuce during this lull, further illustrating the complexity of 
all of the factors that may contribute to plant growth in varying CO2 environments. 

Combinations of the Substance: 
CO2 tends to be a by-product of other processes rather than a component. Composting, fermentation, 
digestion, and combustion all result in the emission of CO2 rather than utilization. As a precursor in the 
production of other substances, CO2 is used in too many capacities to list here. 
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As a stable compound, inert stabilizers, solvents, or preservatives are not needed to facilitate CO2 storage 
in gaseous or cryogenic liquid form. Bulk CO2 storage tanks are typically constructed of steel and 
insulated with polyurethane foam behind a vapor barrier (Air Products and Chemicals, 2014). 

CO2 is used in the production of carbonate and bicarbonate salts, many of which appear on the National 
List. The manufacturing processes for various synthetic carbonates appearing on the National List are 
summarized below (NOP, 2014a, 2023a; Patnaik, 2003): 

• Sodium carbonate peroxyhydrate at 7 CFR 205.601(a)(8) for use as an algicide, disinfectant, and 
sanitizer, including irrigation system cleaning systems: produced by combining sodium 
carbonate with hydrogen peroxide. The reactant sodium carbonate can be prepared using the 
Solvay Process, in which calcium carbonate is thermally decomposed, liberating CO2, which is 
subsequently reacted with ammonia and sodium chloride to form sodium bicarbonate. 
Ultimately, sodium bicarbonate is calcined to produce sodium carbonate. 

• Ammonium carbonate at 7 CFR 205.601(e)(1) for use as an insecticide (including acaricides or 
mite control) and at 7 CFR 205.605(b)(4) for use as a leavening agent: produced by passing CO2 

gas through dissolved ammonia. 
• Potassium bicarbonate at 7 CFR 205.601(i)(9) for use as a plant disease control: produced by 

passing CO2 gas through a solution of concentrated potassium carbonate. 
• Carbonates of zinc, copper, iron, manganese, molybdenum, selenium, and cobalt at 

7 CFR 205.601(j)(7)(ii) for use as plant micronutrients: often produced by reacting sodium 
carbonate (itself prepared with CO2) with other metal salts. 

• Ammonium bicarbonate at 7 CFR 205.605(b)(5) for use as a leavening agent: produced by passing 
CO2 gas through dissolved ammonia. 

• Potassium carbonate at 7 CFR 205.605(b)(24): produced by passing CO2 gas through a solution of 
potassium hydroxide. 

Only one of the EPA registered CO2 products on the Pesticide Product Label System (PPLS) website 
explicitly lists another ingredient. The product, Propoxide 892 (EPA reg. no. 47870-3), lists, in addition to 
CO2, propylene oxide as an active ingredient (EPA, 2016). It is not feasible or legal for anyone to use this 
fumigant product as a plant or soil amendment because propylene oxide is an acute toxin. 

Status 

Historic Use: 
Commercial technology has existed since at least the late 1980’s for CO2-enrichment in irrigation water 
(Kuckens, 1989); however, only a small number of companies produce the equipment (such as Carborain 
from Technica Entwicklungsgesellschaft mbH & Co. KG; CO2 GRO Inc.; and Eco2Mix). We found limited 
literature describing its use. 

As a stand-alone gas, it is used in conventional greenhouse production (Esmeijer, 1999). 

Irrigation water use 
According to Enoch & Oleson (1993), the first experiments testing the effects of CO2-enriched water on 
plant development was in 1866 by Birner & Lucanus. In their review, Enoch & Oleson describe dozens of 
papers, covering roughly 125 years of research into the effects and possible mechanisms of CO2-enriched 
irrigation water affecting plant growth. While we were able to find research papers about the experimental 
use of CO2-enriched water, we found no non-promotional articles documenting the practice of enriching 
irrigation water with CO2, such as by university extension centers. 

We identified three companies that produced CO2-enriched irrigation water equipment. All three were 
marketed differently. 
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512 The oldest product found, Carborain, was granted a U.S. patent in 1989 (Kuckens, 1989). Currently, 
513 marketing for this product primarily focuses on preventing calcium scale deposits on leaves and fruit, but 
514 also makes the following statements (Technica Entwicklungsgesellschaft, 2014): 

• prevents limescale on irrigation equipment. 
516 • safe for plants due to CO2 creating a weak acid. 
517 • improves nutrient absorption. 
518 • functions as an adjuvant for plant protective agents. 
519 

Marketing for CO2 GRO Inc. equipment indicates that it is intended as an alternative to CO2 gas 
521 enrichment in protected (indoor) production (CO2 GRO Inc., n.d.). Additionally, they indicate the CO2 

522 enriched water produced by their products serves as a plant protection agent (CO2 GRO Inc., n.d.). 
523 
524 Eco2Mix (a product made by the petitioner) is marketed for water pH control, replacing the use of 

mineral acids (Eco2Mix, Inc., n.d.). 
526 
527 Gaseous greenhouse use 
528 Researchers have investigated the effects of CO2 on plant growth in closed containers and greenhouses 
529 since at least 1902 (Wittwer & Robb, 1964). Despite the existence of studies demonstrating large increases 

in yields (such as doubling and tripling yield of tomatoes and cucumbers), CO2 enrichment in 
531 greenhouses was still not widely adopted by the mid-1960s (Wittwer & Robb, 1964). However, by the 
532 early 1970s, greenhouse enrichment had begun to be used by commercial growers (Enoch et al., 1976; 
533 Poudel & Dunn, 2017; Slack & Calvert, 1972). In the mid-1980s, CO2 enrichment in greenhouses was 
534 common (Schapendonk & Gaastra, 1984; Tjosvold, 2018). According to Esmeijer (1999), in 1995, 80% of 

greenhouse horticulture businesses used supplemental CO2.3 

536 
537 Organic Foods Production Act (OFPA), USDA Final Rule: 
538 CO2 is not mentioned in OFPA. 
539 

USDA organic regulations do not currently allow producers to enrich (fertilize) crops with synthetic CO2. 
541 Only nonsynthetic sources of CO2 are currently allowed for CO2 enrichment (such as from composted 
542 straw; see Evaluation Question #12). 
543 
544 CO2 can be used as an inert ingredient in pesticide formulations per 7 CFR 205.601(m). This regulation 

allows materials (such as CO2) that appear on 2004 EPA List 4 to be used as inert ingredients. 
546 
547 In production and handling, CO2 can be used as a synthetic, nonagricultural ingredient, in both organic 
548 and made with organic products per 7 CFR 205.605(b)(10). The allowance at § 205.605 includes uses as a 
549 post-harvest substance in the handling of raw agricultural products and facility pest management, as 

described in Guidance NOP 5023 (NOP, 2016a). 
551 
552 International Acceptance: 
553 CO2 is most commonly allowed as a pest control material, as a food additive, and for atmospheric 
554 modification in storage facilities under international standards (detailed below). Canadian standards 

allow its use in soil and greenhouse applications as well. 
556 
557 Canadian General Standards Board Permitted Substances List 
558 CO2 is allowed in crop production as well as processing and handling under the Canadian Organic 
559 Standards per CAN/CGSB 32.311-2020. 

561 In organic crop production, it is allowed for enrichment, storage treatment, and pest control per the 
562 Permitted Substances List (PSL) Table 4.2. 
563 

3 While ambiguous, we assume that Esmeijer was speaking about greenhouse production in the Netherlands, not globally. 

June 9, 2023, Page 13 of 50 



    

 
     

           
                

   
       
           

     
            

       
         

     
  

             
     

              
  

  
              

        
  

              
             

  
         

              
      

         
     

             
        
            

     
  

      
             

    
  

           
              

        
             

   
              

  
              

              
           

     
  

           
            

      
  

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

Full Scope Technical Evaluation Report Carbon Dioxide Crops 

CO2 is allowed in organic processing and handling for a variety of uses: 
• as a food additive with the following restriction: carbonation of wine and mead is prohibited (PSL 

Table 6.3). 
• as a processing aid (PSL Table 6.5). 
• as a food-grade cleaner, disinfectant, and sanitizer, permitted without a mandatory removal 

event (PSL Table 7.3). 
• as a facility pest management substance with the following restriction: for controlled atmosphere 

storage and for storage pest control (PSL Table 8.2). 
• as a post-harvest handling substance with the following restriction: for controlled atmosphere 

storage (PSL Table 8.3). 

CODEX Alimentarius Commission, Guidelines for the Production, Processing, Labelling and Marketing of 
Organically Produced Foods (GL 32-1999) 
CO2 is allowed in crop production as well as processing and handling under the guidelines in CODEX GL 
32-1999. 

As a pesticide in organic crop production, CO2 is allowed with the following restriction: need recognized by 
certification body or authority (Annex 2 Table 2). 

In organic processing and handling, CO2 (INS 290) is allowed as a handling ingredient and processing aid 
for food of plant or animal origin (Annex 2, Table 3 & Table 4). 

European Union (EU) Regulation, EU No. 2018/848 and 2021/1165 
CO2 is allowed for a variety of uses in crop production as well as processing and handling under the 
European Union organic standards per EC No. 2021/1165: 

• as a plant protectant in organic crop production (Annex I, 4, 225A). 
• as a food additive and processing aid: 

o in products of plant and animal origin (Annex V, Part A, Section A1 & A2). 
o for pH regulation in yeast production (Annex V, Part C). 
o for “the production and conservation of organic grapevine products of the wine 

sector” (Annex V, Part D). 

Japan Agricultural Standard (JAS) for Organic Production 
Under the Japanese Agricultural Standards, CO2 is allowed in crop production, processing and handling, 
feed production, and livestock production. 

As a fumigant and post-harvest applied substance, CO2 is allowed per the Japanese Agricultural Standard 
for Organic Products of Plant Origin per Public Notice of the Ministry of Agriculture, Forestry and 
Fisheries No. 1605 of October 27, 2005: 

• As a fumigant, with the following restriction: Limited to the use in storage facilities (Appended 
Table 2). 

• “For maintenance and improvement of the quality of plant products” (Appended Table 5). 

As a food additive and facility pest management substance in food production, CO2 is allowed per the 
Japanese Agricultural Standard for Organic Processed Foods per Joint Public Notice No. 18 of the 
Ministry of Finance and the Ministry of Agriculture, Forestry and Fisheries of September 1, 2022, 
Appended Table 1 & 2. 

Similarly, CO2 is allowed as a facility pest management substance per the Japanese Agricultural 
Standards for Organic Feed per Ministry of Agriculture, Forestry and Fisheries Notification No. 1607 of 
October 27, 2005, Appended Table 2. 
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CO2 is allowed in organic livestock production as a fumigant in storage facilities per the Japanese 
Agricultural Standard for Organic Livestock Products per Public Notice of the Ministry of Agriculture, 
Forestry and Fisheries No. 1608 of October 27, 2005, Appended Table 2. 

IFOAM – Organics International 
CO2 is allowed in organic crop production as well as processing and handling under the IFOAM Norms. 

As a crop protectant and growth regulator in organic crop production, CO2 is allowed with the following 
restriction: shall not be the result of burning fuel solely to produce carbon dioxide; allowed only as a by-product of 
other processes (IFOAM, Appendix 3). 

As a food additive and production aid (including for use in the production of flavoring agents), CO2 is 
allowed per IFOAM Appendix 4–Table 1. 

Evaluation Questions for Substances to be used in Organic Crop or Livestock Production 

Evaluation Question #1: Indicate which category in OFPA that the substance falls under: (A) Does the 
substance contain an active ingredient in any of the following categories: copper and sulfur 
compounds, toxins derived from bacteria; pheromones, soaps, horticultural oils, fish emulsions, 
treated seed, vitamins and minerals; livestock parasiticides and medicines and production aids 
including netting, tree wraps and seals, insect traps, sticky barriers, row covers, and equipment 
cleansers? (B) Is the substance a synthetic inert ingredient that is not classified by the EPA as inerts of 
toxicological concern (i.e., EPA List 4 inerts) (7 U.S.C. § 6517(c)(1)(B)(ii))? Is the synthetic substance an 
inert ingredient which is not on EPA List 4, but is exempt from a requirement of a tolerance, per 
40 CFR part 180? 
CO2 does not contain an active ingredient in any of the categories listed in (A) above. However, the 
substance is listed on 2004 EPA List 4A (US EPA, 2015), and was not revoked under NOP 5008, Guidance: 
Reassessed Inert Ingredients (NOP, 2011). As an insecticide, “carbon dioxide is exempted from the 
requirement of a tolerance when used after harvest in modified atmospheres for stored insect control on 
food commodities” per 40 CFR 180.1049. 

Evaluation Question #2: Describe the most prevalent processes used to manufacture or formulate the 
petitioned substance. Further, describe any chemical change that may occur during manufacture or 
formulation of the petitioned substance when this substance is extracted from naturally occurring 
plant, animal, or mineral sources (7 U.S.C. § 6502 (21)). 
Several different methods are utilized to manufacture or capture CO2 since it is the end result of so many 
chemical and biological processes. The most prominent processes used are fuel combustion, as a by-
product of hydrogen and ammonia production, and fermentation (Price, 2015). 

Combustion of hydrocarbon fuel and chemical decomposition 
Combustion-derived CO2 is manufactured both specifically for capture and as a recovered by-product of 
other industrial processes including power generation, steam boilers, cement manufacture, and lime kilns 
(Chapel & Mariz, 1999; Steen, 2006). This is known as flue gas recovery. The majority of flue gas recovery 
is the result of natural gas methane combustion, but some comes from the combustion of fuel oils or coal 
(Chapel & Mariz, 1999; Steen, 2006). Monoethanolamine (MEA) solutions typically absorb and capture 
the CO2 for recovery in scrubbers (Chapel & Mariz, 1999). 

The combustion of natural gas results in CO2 and water vapor, represented in Equation 1 (Patnaik, 2003): 

𝐶𝐶𝐻𝐻4 + 2𝑂𝑂2 → 𝐶𝐶𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂 
(1) 
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668 Calcium oxide is one of the principal components of cement. The calcination of calcium carbonate 
669 limestone in kilns results in calcium oxide lime and CO2, represented by Equation 2, which 
670 spontaneously occurs at temperatures above approximately 900°C (Kumar et al., 2007): 
671 
672 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3 + ℎ𝑒𝑒𝐶𝐶𝑒𝑒 → 𝐶𝐶𝐶𝐶𝑂𝑂 + 𝐶𝐶𝑂𝑂2 

673 (2) 
674 
675 Lime kilns use fossil fuels to reach calcination temperatures. CO2 results from the combustion of fuels as 
676 well as the calcium carbonate decomposition reaction. 
677 
678 Synthesis gas 
679 Large volumes of CO2 are produced as a by-product of synthesis gas (syngas) production (El-Nagar & 
680 Ghanem, 2019; Schneider et al., 2020). Syngas is used as a raw material in many chemical and fuel 
681 production processes as an alternative to directly refined compounds from crude oil, and can be prepared 
682 from biomass, carbon-based wastes, or fossil fuels (El-Nagar & Ghanem, 2019). In general, carbon-based 
683 feedstocks are “gasified” by exposure to heat without combustion in the presence of oxygen or steam, 
684 resulting in a mixture of different gases including carbon monoxide, hydrogen, CO2, water, and methane 
685 (El-Nagar & Ghanem, 2019). The generalized reaction is (El-Nagar & Ghanem, 2019): 
686 
687 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵 + 𝑂𝑂2 → 𝐶𝐶𝑂𝑂 + 𝐻𝐻2 + 𝐶𝐶𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 + 𝐶𝐶𝐻𝐻4 

688 (3) 
689 
690 Syngas, a combustible mixture of different gases, may also be prepared from natural gas (Schneider et al., 
691 2020). When exposed to pressurized steam and in contact with a catalyst, a hydrogen and carbon 
692 monoxide mixture (with lesser amounts of carbon dioxide) forms in a process known as steam reforming 
693 represented by Equations 4-6 (Anzelmo et al., 2018; Schneider et al., 2020): 
694 
695 𝐶𝐶𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝑂𝑂2 + 4𝐻𝐻2 

696 (4) 
697 
698 𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝑂𝑂 + 3𝐻𝐻2 
699 (5) 
700 
701 𝐶𝐶𝑂𝑂 + 𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝑂𝑂2 + 𝐻𝐻2 
702 (6) 
703 
704 Since natural gas is mostly methane, Equations 4 and 5 produce the bulk of the hydrogen, the desired 
705 material in natural gas steam reforming, with CO2 as a by-product (Anzelmo et al., 2018). The carbon 
706 monoxide is used downstream to produce more hydrogen and CO2 in Equation 6 (Anzelmo et al., 2018). 
707 
708 Approximately half of the purified hydrogen resulting from syngas production is used in the Haber-
709 Bosch process to manufacture ammonia through the following reaction (El-Nagar & Ghanem, 2019; 
710 Kyriakou et al., 2017; Schneider et al., 2020): 
711 
712 𝑁𝑁2 + 3𝐻𝐻2 → 2𝑁𝑁𝐻𝐻3 

713 (7) 
714 
715 The nitrogen in Equation 7 comes from the atmosphere and the hydrogen primarily from syngas 
716 (Patnaik, 2003; Van der Ham et al., 2014). Approximately 1.4% of all CO2 emissions on a global scale 
717 result from this overall reaction system (Capdevila-Cortada, 2019), which also accounts for 1-1.4% of all 
718 energy usage on Earth (Capdevila-Cortada, 2019; Van der Ham et al., 2014).4 

4 The enormous energy expenditure of the Haber-Bosch process is the result of the high temperatures and pressures required to 
break the triple chemical bond in atmospheric diatomic nitrogen, along with the sheer scale of ammonia produced with this method 
(Van der Ham et al., 2014). 
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Fermentation 
CO2 may be produced as a by-product of carbohydrate fermentation by yeast in the production of ethanol 
or alcoholic beverages (Patnaik, 2003; Steen, 2006). Equation 8 represents a simplified chemical reaction 
by which yeast consume glucose (or other fermentable sugars) yielding CO2 gas and ethyl alcohol 
(ethanol): 

𝐶𝐶6𝐻𝐻12𝑂𝑂6 → 2𝐶𝐶𝑂𝑂2 + 2𝐶𝐶2𝐻𝐻5𝑂𝑂𝐻𝐻 
(8) 

CO2 is often suspended in foam during fermentation and must be passed through a separator (Steen, 
2006). The gas then enters a scrubber to remove alcohols and ketones, resulting in CO2 with a purity as 
high as 99.998% (Steen, 2006). 

Natural CO2 wells 
During natural gas and oil exploration, deposits of nearly pure (98%) CO2 are often encountered that may 
be exploited (Allis et al., 2001). The process for extraction is generally similar to natural gas extraction, 
achieved by drilling and pumping to the surface (Allis et al., 2001). In the United States, the majority of 
economically viable natural CO2 wells are associated with already existing petroleum or methane 
operations in Colorado, Wyoming, New Mexico, Texas, and Utah, but one of the most substantial sources 
in Mississippi primarily produces CO2 alone (Eppink et al., 2014). 

Onsite production 
Producers may initiate chemical reactions between acids and carbonate salts onsite to generate CO2 

(Poudel & Dunn, 2017). Dripping acetic acid solutions onto baking soda or another carbonate material, 
for example, will produce CO2 and water in a chemical decomposition reaction. In order to produce 
enough CO2 to have an effect on plant growth, large amounts of reactants are required and the CO2 

concentration is exceedingly difficult to control, so this is not typically a practical method for growers 
(Poudel & Dunn, 2017). 

Processing and transport 
Depending on the source, CO2 may require different levels of purification and processing (Häring (Ed.), 
2007). Typically, CO2 derived from hydrogen generation in syngas production, natural gas refining, acid 
neutralization and brewery operations require the least amount of secondary processing. CO2 derived 
from flue gases, lime calcination kilns, and cement furnaces require significant purification steps. 
Impurities in the latter are numerous, but notable examples are highly toxic nitrogen and sulfur oxides, 
hydrogen cyanide, mercury, and heavy metal oxides (Häring (Ed.), 2007). 

For low purity CO2, adsorption purification is typically required to strip CO2 from exhaust gases (Häring 
(Ed.), 2007). The gas mixture resulting from combustion enters a stripper consisting of a column most 
commonly filled with an amine solvent and water. MEA is a common choice, particularly for flue gas 
derived from fuel combustion or lime kilns, but certain alcohols may also be used. Gas enters the bottom 
of the stripper and CO2 is absorbed by the solvent, forming a chemical bond. One example of this reaction 
(9), using MEA, appears here (Häring (Ed.), 2007): 

𝐶𝐶2𝐻𝐻5𝑂𝑂𝑁𝑁𝐻𝐻2 + 𝐻𝐻2𝑂𝑂 + 𝐶𝐶𝑂𝑂2 ↔ 𝐶𝐶2𝐻𝐻5𝑂𝑂𝑁𝑁𝐻𝐻3+ + 𝐻𝐻𝐶𝐶𝑂𝑂3− 

(9) 

Fresh solvent continuously enters the stripper from the top. The CO2-enriched liquid is pumped from the 
bottom to the top of the stripper and heated by further solvent introduced below (Häring (Ed.), 2007). At 
higher temperatures, the temporary chemical bond breaks and CO2 is liberated from the solvent. Solvent 
steam is recondensed by cool water for reuse (Häring (Ed.), 2007). 

After collection, CO2 is typically compressed, purified further using activated carbon beds, then cooled by 
water and refrigerants (Häring (Ed.), 2007). Residual water and other impurities may be removed by 
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molecular sieves like zeolite or clay matrices, or by silica gel. Finally, the purified CO2 gas is liquefied 
against evaporative refrigerants and stored as a liquid in pressurized refrigeration units. Various 
chemical and physical methods may be used for final purification in order to meet specific requirements 
for different industries (Häring (Ed.), 2007). 

CO2 is usually shipped to distributors on tanker trucks (Steen, 2006). In large-scale agricultural 
operations, CO2 is often transferred directly from trucks to storage tanks on farms, but small-scale 
operations may purchase 20 to 50 pound tanks directly from distributors (Poudel & Dunn, 2017). In the 
case of gas derived from natural wells, the majority is transported by gas pipeline for use in oil recovery 
operations (Allis et al., 2001). 

CO2 may also be prepared as dry ice (Häring (Ed.), 2007). When pressurized CO2 is released from its 
container into the atmosphere, a portion of the gas solidifies into “snow” through a process known as 
adiabatic cooling (Häring (Ed.), 2007). The snow can then be compressed into ice blocks or pellets and 
shipped in insulated boxes (Häring (Ed.), 2007). Some naturally high purity, well-derived CO2 may be 
frozen into dry ice for transport (Allis et al., 2001). Dry ice gradually sublimes back into gas (Häring (Ed.), 
2007). 

Small-scale crop producers may use dry ice blocks for atmospheric enrichment rather than other CO2 

supplementation methods because it is inexpensive, it very slightly reduces the temperature of 
greenhouses, and is readily available (Poudel & Dunn, 2017). A one-pound dry ice block can supply CO2 

to a 100 m2 area for a full day, for just a few dollars. However, the concentration of CO2 is difficult to 
control (Poudel & Dunn, 2017). 

Market statistics 
CO2 from ethanol production is the largest share of the CO2 consumer market by dollar value, making up 
33% of total sales revenue, closely followed by CO2 from hydrogen production (including steam 
reforming) (Grand View Research, 2022). From an economic perspective, the market value of CO2 used 
for agricultural applications is a small fraction compared to the food, medical, oil and gas, and rubber 
industries, which were responsible for approximately 80% of all market value of CO2 in 2021. Of the 
remaining 20%, slightly less than half was spent on fire-fighting applications, with the remainder only 
classified as “other” in the market data obtained for this report (Grand View Research, 2022). 

The market value for CO2 does not necessarily correspond to the total usage of different sources. The 
International Energy Agency (IEA) (2019) state that the fertilizer industry uses 56% of all CO2 produced 
in the manufacture of urea. Approximately 33% is used in the oil and gas industry, while the food and 
beverage industry uses just 6% (IEA, 2019). The remaining 4% is for “Other” uses, presumably including 
direct agricultural applications not related to fertilizer production. The disconnect between market value 
and total usage seems to be the result of regional and industry differences, and prices are often 
determined through market negotiations. According to IEA (2019), the price of one ton of CO2 can range 
from 3 dollars per ton for CO2 sourced from ammonia production waste under long-term sales contracts 
to greater than 400 dollars per ton for high-purity CO2 used in certain specialty applications. There is also 
a seasonal component since fertilizer manufacturing is tied to the spring planting season, and beverage 
manufacturing increases in summer (IEA, 2019). 

Given the ubiquity of excess CO2 in the atmosphere and as a by-product of so many industrial processes, 
it is ironic that shortages of the gas became apparent in 2022 (Bettenhausen, 2022; Chappell, 2022; Popli, 
2022). Due to necessary maintenance at ammonia plants, the shutdown of ethanol plants, contamination 
at a natural high-producing CO2 well, and driver shortages, brewers and other food processing industries 
had difficulty sourcing CO2. Some of the shortage was attributed to COVID-19 pandemic supply chain 
challenges with some level of resolution expected soon (Bettenhausen, 2022; Chappell, 2022; Popli, 2022). 
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Evaluation Question #3: Discuss whether the petitioned substance is formulated or manufactured by a 
chemical process or created by naturally occurring biological processes (7 U.S.C. § 6502 (21)). 
Although CO2 production is ultimately a physical process of separating it from other substances, thus 
resulting in a nonsynthetic outcome when consulting NOP 5033-1: Guidance: Decision Tree for Classification 
of Materials as Synthetic or Nonsynthetic (2016b), the processes to manufacture the raw materials used in 
CO2 production are often classified as synthetic. CO2 derived from the combustion of fossil fuels is 
produced by burning biological matter (or rather fossilized biological matter), but the process for refining 
raw hydrocarbons into useful fuels like fuel oil, natural gas, or alkane fuels is typically considered to be a 
synthetic process. It is possible to produce CO2 naturally (non-synthetically) using fermentation processes 
or extraction from natural CO2 wells, but the prevalence and availability of different CO2 production 
streams is difficult to define, is determined by regional industry and transport infrastructure, and by the 
nature of the commodified raw chemical material market because many streams may be combined. 
However, Eppink et al. (2014) state that 97% of all CO2 directly extracted from natural wells is used in the 
process of enhanced oil recovery (EOR), in which CO2 is injected into oil deposits to push oil to the 
wellbore. 

Synthetic sources: hydrocarbon fuel combustion, syngas production, and chemical decomposition 
Natural gas is extracted from oil wells (associated gas) or from gas wells (non-associated gas). Before 
entering a pipeline, the gas must be treated to meet certain purity requirements (Eser, 2020a). A mixture 
of temperature and pressure control separates liquids from gases; liquids are sent to an oil refinery and 
gas is further treated. Hydrogen sulfide and CO2 are separated by treatment with synthetic amines, and 
the natural gas is further treated with activated carbon to remove mercury, and glycol to remove water. 
Finally, the gas stream is combined with an oil that absorbs other hydrocarbon impurities before entering 
a pipeline. It may also be compressed into a cold liquid for non-pipeline transport (Eser, 2020a). 

In general, several streams of natural gas are combined and transported by pipeline to refineries, 
meaning the variable purity levels of each stream result in a mix requiring refinement (Zhang et al., 2017). 
Synthetic mercaptan is also added to commercial natural gas as an odorant to make leaks easier to 
identify. 

Other hydrocarbon fuels may be recovered from natural gas processing, or produced directly from crude 
oil (Eser, 2020b). Crude oil is distilled into different weight fractions, which would typically be defined as 
a physical process. Some of the resulting fractions are then “cracked” using heat, pressure, steam, or 
chemical catalysts (Eser, 2020b). The processes that use chemical catalysts are synthetic according to the 
Decision Tree. Those that use heat, pressure, or steam may be considered physical processes and 
therefore nonsynthetic. 

The production of synthesis gas is directly linked to natural gas refining processes, utilizing “cracking” 
and steam reforming on the gas stream to break methane into carbon monoxide, hydrogen, CO2, and 
water (El-Nagar & Ghanem, 2019). 

Generally, fossil fuel refining processes are considered synthetic when examined against the Decision 
Tree (NOP, 2016b). In the case of cracking, chemical changes occur that are not mediated by a biological 
process or heat. The commodified nature of fossil fuel derivatives often results in mixtures derived from 
different sources and refineries, so determining which sources might qualify as synthetic or nonsynthetic 
is not always achievable. 

The production of calcium oxide used in cement manufacture is considered a synthetic chemical process 
as well, with CO2 as a by-product. The thermal decomposition of carbonate rocks by calcination, resulting 
in alkaline earth oxides and CO2, is specifically noted in NOP 5033-1 as a synthetic process (NOP, 2016b). 

As described above, operators may also produce CO2 onsite from carbonate materials and acids. The 
acid/base reaction that occurs results in a chemical change in the material. As a simple example, the 
reaction of limestone with vinegar containing acetic acid chemically transforms calcium carbonate and 
acetic acid into calcium acetate, CO2, and water. 
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Nonsynthetic sources: fermentation and CO2 gas wells 
CO2 derived from fermentation processes is typically relatively clean when compared to that produced 
from hydrocarbon combustion (Steen, 2006). The processing system may be as simple as skimming 
residual foam left over from the fermentation process, followed by a treatment with water to remove 
soluble alcohols and ketones. These recovery systems can produce CO2 with an extremely high purity of 
99.998%, without the use of additives or reactants besides water (Steen, 2006). Compression into liquid or 
dry ice are both physical processes involving only pressure control. 

Due to the frequent association of natural CO2 gas wells with natural gas and petroleum extraction 
operations, many facilities have proprietary processing and separation schemes for CO2 refining 
operations (Eppink et al., 2014). Deposits may contain hydrogen sulfide that requires removal and 
repurposing into elemental sulfur, or helium, another valuable product. A small fraction of directly 
extracted CO2 may enter the consumer market, since 97 percent is used in oil production (Eppink et al., 
2014). The majority of the literature consulted for this report concerning natural CO2 wells explores the 
reinjection of naturally occurring CO2 to recover oil while simultaneously sequestering carbon 
underground. 

Evaluation Question #4: Describe the persistence or concentration of the petitioned substance and/or 
its by-products in the environment (7 U.S.C. § 6518 (m) (2)). 
CO2 used in agriculture will largely be derived from fossil fuels, previously stored in the lithosphere (see 
Evaluation Question #2). The lithosphere is the largest reservoir by far of CO2 on earth (see Table 3) 
(Mackenzie & Lerman, 2006; Topham et al., 2014). CO2 used in irrigation water or for gaseous enrichment 
will re-enter the carbon cycle (see Figure 6), temporarily persisting or concentrating in one of the three 
other major reservoirs: the terrestrial biosphere, the hydrosphere (oceanic reservoir), or atmosphere (US 
DOE, 2008; Cawley, 2011; IPCC, 2021). 

It is difficult to concretely identify the amount of CO2 that is currently produced for irrigation water and 
greenhouse use. In part, this is due to a continuing rapid increase in greenhouse production. For an 
estimate of the amount of CO2 that will re-enter the carbon cycle as a result of agricultural use, see the 
Focus Question at the end of this report. 
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913 
914 Figure 6: Global biogeochemical cycle of carbon. NPP is net primary production. DIC is dissolved inorganic 
915 carbon. DOC is dissolved organic carbon. POC particulate organic carbon. 1 gigaton C (Gt C) = 1 trillion kg. 
916 Adapted from Mackenzie & Lerman (2006). 
917 
918 Table 3: Estimate of the total mass of CO2 (equivalent) in different systems on Earth. Data from Topham et al., 
919 2014 and Bar-On et al., 2018. 

System Quantity 
(metric tons) 

Notes 

Lithosphere 5.5 X 1016 Found in carbonate minerals, metals, and organic compounds in the earth’s 
crust. 

Atmosphere 2.3 X 1012 Found as CO2 gas. 
Hydrosphere 1.4 X 1014 Found as dissolved CO2 gas, carbonates, hydrogencarbonates, and carbonic 

acid. 
Biosphere (as 
global biomass) 

*2.0 X1012 *Reported as 5.5 X 1011 metric tons of carbon, not CO2. Calculated using the 
atomic mass ratio of CO2 to carbon (3.67) multiplied by 5.5 X 1011 metric tons of 
carbon. 

920 
921 CO2 persistence/concentration background 
922 Carbon is often found in oxidized forms at the Earth’s surface, such as CO2 gas or carbonate ions 
923 (Mackenzie & Lerman, 2006). Around 210 gigatons (Gt) of carbon is cycled through the biosphere each 
924 year (US DOE, 2008). CO2 is a major part of the carbon cycle, being emitted and absorbed by natural 
925 processes (US EPA, 2022). Plant respiration and the decay of organic matter are the largest contributors of 
926 CO2 to the atmosphere (Strawn et al., 2015). Around 120 Gt of carbon moves between the atmosphere and 
927 terrestrial biosphere due to processes such as photosynthesis and respiration, while 90 Gt moves between 
928 the ocean and the atmosphere (US DOE, 2008). The oceans and terrestrial biosphere serve as significant 
929 “sinks,” or collection reservoirs for CO2 that would otherwise exist in the atmosphere (Cawley, 2011; 
930 Jiang et al., 2019; Khatiwala et al., 2013; US DOE, 2008). The oceans absorb about 1.6 Gt of carbon per year 
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931 more than they emit, while terrestrial systems (excluding human activity) absorb around 1.4 Gt more per 
932 year than they emit (Cawley, 2011). 
933 
934 The residence time for a molecule of CO2 in the atmosphere is approximately five years (Cawley, 2011). 
935 However, CO2 exists in an equilibrium, moving to and from different reservoirs. The rate at which CO2 

936 moves in all of the different reservoirs, especially surface and deep waters in the ocean, affects how 
937 quickly the entire system responds over the long term (Solomon et al., 2007). The time it takes CO2 to 
938 reach equilibrium when there is some type of disturbance (such as an influx of CO2 from burning fossil 
939 fuels) is therefore much longer than five years, with a variety of estimates from about 100 years (Cawley, 
940 2011; Solomon et al., 2007) to potentially thousands of years (IPCC, 2021). 
941 
942 In the atmosphere 
943 Gaseous CO2 is relatively stable in the atmosphere, except when exposed to high temperature, certain 
944 reactive reagents, electricity, and to some degree, ultraviolet light (Mackenzie & Lerman, 2006; National 
945 Research Council (US), 2001; Topham et al., 2014). Other carbon compounds in the atmosphere, such as 
946 carbon monoxide (CO), methane (CH4), and hydrocarbons are ultimately oxidized to form CO2 

947 (Mackenzie & Lerman, 2006). CO2 in the atmosphere regularly moves back and forth between terrestrial 
948 and ocean systems (Cawley, 2011; Jiang et al., 2019; Khatiwala et al., 2013; US DOE, 2008). 
949 
950 CO2 concentrations in the atmosphere fluctuate throughout the year (Esmeijer, 1999). In winter months, 
951 CO2 concentrations may be higher than in summer, when photosynthesis captures it at a higher rate (see 
952 Figure 7, below). In fall and winter, decay from fallen leaves (along with reduced photosynthesis) 
953 increase the flow of CO2 to the atmosphere (US DOE, 2008). 
954 

955 
956 Figure 7: Average outside concentration of CO2 per week between 1992–1996, measured in Naaldijk, Netherlands. 
957 Adapted from Esmeijer (1999). 
958 
959 In the oceans 
960 When CO2 in the atmosphere dissolves in surface waters of the ocean, some of it reacts to form HCO3-

961 and CO32- (Solomon et al., 2007). Collectively, these three materials (CO2, HCO3- and CO32-) are known as 
962 dissolved inorganic carbon (DIC). When DIC moves to colder parts of the ocean (found at high latitude), 
963 it sinks to deeper parts of the ocean. When deep ocean water moves to warmer parts of the ocean, it 
964 moves upwards, drawing DIC along with it. When phytoplankton photosynthesize, they take up some of 
965 the DIC, transforming it into dissolved organic carbon (DOC). Some of this is trapped in dead organisms, 
966 most of which are broken down by bacteria, reforming DIC. A small amount of DOC continues to sink 
967 into the ocean depths, where it is buried or re-suspended. These biotic and abiotic processes create a 
968 vertical gradient in the ocean, where deep water has higher levels of CO2, and surface water has lower 
969 levels (Solomon et al., 2007). 
970 
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971 In terrestrial systems 
972 In terrestrial systems, about half of the CO2 that is taken up during photosynthesis is respired 
973 immediately, where it returns to the atmosphere (US DOE, 2008). The rest becomes biomass, which feeds 
974 subsequent trophic levels. Some of the biomass, such as in woody plants and soil organic matter, can 
975 remain for thousands of years. Eventually, respiration processes return almost all of the carbon to the 
976 atmosphere (except for that which becomes fossilized) (US DOE, 2008). 
977 
978 Anthropogenic increase 
979 From 1750 to 2020, atmospheric concentration of CO2 has increased by 47.9% (US EPA, 2022). This 
980 increase comes primarily from anthropogenic combustion of fossil fuels (US EPA, 2022). One of the other 
981 contributors is land use changes, such as deforestation (IPCC, 2021). By 2007, human activity was 
982 contributing about 9 Gt of carbon annually to the global carbon cycle (US DOE, 2008).5 As of 2019, CO2 

983 emissions due to fossil fuel use alone was approximately 9.9 Gt (IPCC, 2021). 
984 
985 For many decades, the proportion of anthropogenic CO2 emissions accumulating in different reservoirs 
986 has remained constant, with (IPCC, 2021): 
987 • 46% to the atmosphere 
988 • 31% to terrestrial systems 
989 • 23% to the oceans 
990 
991 Evaluation Question #5: Describe the toxicity and mode of action of the substance and of its 
992 breakdown products and any contaminants. 
993 Plants 
994 Elevating CO2 can benefit plants, but soil composition, nutrient availability, plant species and plant 
995 genetics all influence the response (Dong et al., 2022; Enoch & Olesen, 1993). Generally speaking, 
996 increasing CO2 up to 1200 ppm is beneficial to C3 plants (Bugbee et al., 1994; Reuveni, 1997). However, 
997 increasing CO2 beyond that can cause a decrease in plant growth and yield (Bugbee et al., 1994; Reuveni, 
998 1997; Schwarz, 1999). For example, Schwarz (1999) found that plants in growth chambers showed 
999 symptoms of toxicity when subjected to 2000 ppm CO2 (see Table 4), while control plants did not. 

1000 
1001 Schwarz (1999) found that elevating CO2 to 2000 ppm caused some plant species to have reduced leaf 
1002 area and increased leaf thickness. This is consistent with what several other researchers have found in a 
1003 range of plants (Kovenock & Swann, 2018; Rogers et al., 1997). This response to increased CO2 results in 
1004 decreased photosynthetic efficiency (Kovenock & Swann, 2018; Rogers et al., 1997). 
1005 
1006 Table 4: Summary of CO2 toxicity symptoms in shoots of various plant species after 4-6 days of CO2 treatment 
1007 (2000 ppm). Adapted from Schwarz, 1999. 

Crop Yellow 
stripes 

Yellowing Crumbling Reduced leaf 
area 

Delay in 
development 

Recovery after 
treatment ended 

Wheat + - - - No Fully 
Maize + - - - No Fully 
Bean - + + ++ Yes No 
Bean + saline 
soil 

- ++ ++ ++ Yes, very 
strong 

No, collapse 

Soybean - + - + Yes Partly 
Tomato - + + + Yes Partly 
Tomato + 
saline soil 

- + + + Yes, very 
strong 

No, collapse 

Lettuce - + - ++ Yes Partly 
Radish - - - - Yes Partly 

1008 + = strong signs; ++ = very strong signs; - = no signs 
1009 
1010 Enoch & Olesen (1993) report that in early experiments, some plant injury occurred with CO2 treatments. 
1011 However, one of the mentioned experiments (Noyes, 1914) involved treating only two plants (one corn 

5 Fossil fuel use contributed 7.6 gigatons of carbon. 
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plant, one tomato plant), with an unidentified quantity of CO2. In experiments by Cannon & Free (1925), 
experimental concentrations of CO2 in the root atmosphere between 25 to 75% caused root growth to 
slow or stop in some plants like Covillea tridentate and Krameria canescens, while other plants like 
Mesembryanthemum aequilaterale were relatively unaffected. 

In contrast, while Schwarz (1999) noted toxicity symptoms in aerial plant parts, he found no symptoms in 
roots. Schwarz states that most reported toxic symptoms in the root environment are likely a result of the 
lack of oxygen, and not high CO2 concentration. 

The negative growth responses of plants at CO2 concentrations over 1200 ppm is often attributed to its 
influence on ethylene production (Bugbee et al., 1994; Enoch & Olesen, 1993; Mathooko, 1996; Mathooko 
et al., 1998). CO2 can affect the production of ethylene, in some cases inducing it, while in other cases 
suppressing it, depending on a variety of factors (Dhawan et al., 1981; Bugbee et al., 1994; Mathooko et 
al., 1998; Mathooko, 1996). Ethylene is a plant hormone involved with several physiological processes, 
including ripening, stress responses, senescence, and growth (Enoch & Olesen, 1993; Mathooko et al., 
1998). 

We found no information that specifically indicated that carbonate (CO32-) or bicarbonate (HCO3-) ions, 
formed from the dissolution of CO2 in water, are toxic to plants. 

Microorganisms 
At significantly elevated levels, CO2 inhibits microbial growth, and this effect is amplified under pressure 
(Ballestra et al., 1996; Bertoloni et al., 2006). 

Schulz et al. (2012) investigated the effects of CO2 concentration from 50-100% in the gas-phase of a liquid 
medium on a representative sample of bacteria commonly found in terrestrial and freshwater systems: 
Pseudomonas putida, Bacillus subtilis, Desulfovibrio vulgaris, and Thauera aromatica. Generally speaking, the 
lag phase between when bacteria were added to glass tubes and when they began reproducing was 
significantly lengthened for those grown in the presence of CO2 (50–100%). The researchers also found 
that the growth rate decreased as CO2 concentration increased. The inhibitory effect of CO2 on growth 
was the most pronounced for P. putida, an obligate aerobe. At 60% CO2, P. putida showed severely 
inhibited growth (Schulz et al., 2012). 

A few mechanisms have been proposed to explain the effect that CO2 has on microorganisms. Sears & 
Eisenberg (1961) proposed that CO2 decreases how miscible membranes are in water, and increases their 
electrical resistance. Ballestra et al. (1996) suggested that antimicrobial properties of CO2 involved a 
complex mechanism, with CO2 penetrating into the cell and forming anti-microbial compounds, 
damaging membranes, disrupting enzymatic activities, and decreasing pH. Jones & Greenfield (1982) 
proposed that CO2 inhibits specific microbial metabolic processes. By increasing CO2 concentration 
within the cell, the CO2 equilibrium is disturbed, which inhibits metabolic chemical reactions that would 
normally produce more CO2. The excess CO2 already in the cell limits the reaction rates of processes that 
produce additional CO2 during specific steps—essentially clogging these processes. 

Animals 
CO2 can be toxic to animals, depending on its concentration. In a review of toxicology literature, Guais et 
al. (2011) found evidence that elevated levels of CO2 caused a wide variety of toxic effects in mammals 
(see Table 5). Factors involved in causing these effects include CO2’s role in: 

• lowering blood pH. 
• control of breathing rate through interacting with chemoreceptors. 
• vasodilation and vasoconstriction (including in the brain), depending on concentration. 
• participating in biochemical reactions (along with HCO3-), for example that: 

o transport hydrogen ions in mitochondria. 
o produce cell membrane components. 
o produce glucose. 
o produce pyrimidine (used to form other substances such as RNA and DNA). 
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1067 • other metabolic pathways. 
1068 • triggering the production of inflammation-related substances, such as cytokines, interleukins, 
1069 and mucus glycoprotein. 
1070 • hormone secretion. 
1071 
1072 Table 5: Effects of elevated CO2 on mammals. Data summarized from Guais (2011). 

Animal Exposure 
type 

[CO2] Effect type Specific effect 

Guinea 
pig 

Acute 
(1 hour) 

15% Respiratory 
acidosis6 

Partial pressure of CO2 (PaCO2) increased to 17.8%.7 

Guinea 
pig 

Chronic 
(73 day) 

15% Respiratory 
acidosis 

Initially (first day), animals show: 
• decline in extracellular and urine pH, and 

inorganic phosphorus plasma concentration. 
• increase in calcium plasma concentration and 

urine inorganic phosphorus. 
Later: 

• extracellular pH returns to normal. 
• plasma calcium remains high. 
• inorganic phosphorus remains low. 
• renal calcification after 48 hours. 

Rat Chronic 
(11 days) 

10–15% Respiratory 
acidosis 

PaCO2 increases to 15-22%. 

Human Acute 5%– 
20% 

Metabolic At 5%, doubles rate of glycolysis and cellular respiration. 
At 20%, depresses cellular respiration (no further effect on 
glycolysis). 

Guinea 
pig 

Chronic 1.5–3% Metabolic At 1.5%, weight loss for 25 days, then begin to regain 
weight after. 
At 3%, weight loss for 35 days. 

Guinea 
pig 

Chronic 
(7 days) 

15% Metabolic Transient increase in metabolic enzymes, which return to 
normal after 3-7 days (depending on the enzyme). 

Guinea 
pig and 
rat 

Chronic 
(7 days) 

3% Metabolic Depletion of glycogen vacuoles, and an increase in fat 
vacuoles. This is likely due in part to acidosis causing a 
repression in fat metabolism. CO2 exposure can also 
increase fat synthesis in the liver. 

Monkey Acute 5–10% Pulmonary Respiratory rate doubles when exposed to 5% CO2, and 
death occurs at 10%. 

Guinea 
pig 

Chronic 1–15% Pulmonary At 1%: changes to lung cells (alveolar pneumocytes), 
including enlargement (hyperplasia). 
At 3-15%: malformations in lung tissue (hyaline 
membranes), loss of surfactants in alveoli, edema, 
decreased gas exchange and lung collapse (atelectasis). 

Mouse Chronic 
(2 weeks) 

8% Pulmonary Abnormal lung development in young mice, no effect on 
adult mice. 

Dog and 
monkey 

Acute 10% Cardiovascular Increases heart rate due to changes in blood pH. 

Guinea 
pig 

Chronic 15% Neuroendocrine Stimulates adrenal glands. 

Rat and 
guinea 
pig 

Chronic 5–15% Reproductive At 5-10%, causes reversible damage to testes. 
At 15%, decreases sperm formation in rats and guinea pigs. 

6 Lowered blood pH 
7 CO2 freely diffuses from lung tissue into the bloodstream, resulting in an increase in the partial pressure of CO2 (PaCO2) (Guais et 
al., 2011). When PaCO2 is elevated to a certain point, it causes a pH change in the blood (acidosis). The body responds by adding 
buffers (bicarbonate) to blood plasma to return pH to normal. Later, the body may excrete carbonic acid, and reabsorb more 
bicarbonate. The upper limit for normal is 6.75% PaCO2 (Guais et al., 2011). 
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Animal Exposure 
type 

[CO2] Effect type Specific effect 

Rats and 
rabbits 

Acute 6–13% Developmental At 6% for 24 hours during pregnancy, causes cardiac and 
skeletal malformations in rat pups. 
At 10%, causes abnormal eye development (retinopathy of 
prematurity) in rat pups. 
At 10-13% during pregnancy, rabbit pups develop 
vertebral malformations. 

1073 
1074 CO2 is also toxic to invertebrates, and has been investigated as a tool to control a variety of species, 
1075 including (Gunasekaran & Rajendran, 2005; Nielson et al., 2012): 
1076 • Asian clams. 
1077 • zebra mussels. 
1078 • New Zealand mudsnails. 
1079 • drugstore beetle. 
1080 • cigarette beetle. 
1081 • rust red flour beetle. 
1082 • confused flour beetle. 
1083 • Indian meal moth. 
1084 • German cockroach. 
1085 
1086 At high concentrations (35-90%) for prolonged periods of time (24-96 hours), it is 100% lethal to drugstore 
1087 beetle (Stegobium paniceum) and cigarette beetle (Lasioderma serricorne) (Gunasekaran & Rajendran, 2005). 
1088 The time and concentrations required for 100% mortality varied by life stage, with adults being more 
1089 susceptible than eggs and larvae. At sub-lethal concentrations and exposure times, CO2 can affect 
1090 reproduction and developmental processes in insects, reducing successful progeny (Gunasekaran & 
1091 Rajendran, 2005). 
1092 
1093 In a study of marine benthic invertebrates and fish, Lee et al. (2016) found that invertebrates varied in 
1094 their tolerance to elevated CO2 (1-30%). Intertidal organisms such as benthic copepods and clams were 
1095 more resistant to elevated levels of CO2, while sub-tidal species brittle starfish and medaka were more 
1096 sensitive (Lee et al., 2016). 
1097 
1098 Evaluation Question #6: Describe any environmental contamination that could result from the 
1099 petitioned substance’s manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). 
1100 Anthropogenic contributions of CO2 continue to exceed what oceans and terrestrial systems can absorb; 
1101 CO2 is therefore increasing in the atmosphere. In the atmosphere, CO2 absorbs longwave radiation 
1102 coming from the earth’s surface, causing warming known as “the greenhouse effect” (Topham et al., 2014; 
1103 US EPA, 2022). This is the primary driver of climate change (Solomon et al., 2007; IPCC, 2021). 
1104 
1105 Generally speaking, any use of CO2 that originated from a lithospheric source (e.g., fossil fuels), 
1106 regardless of whether it is used “properly” or not, will ultimately add CO2 to the other reservoirs – the 
1107 atmosphere, the hydrosphere, and the biosphere (Esmeijer, 1999; Topham et al., 2014; US DOE, 2008; US 
1108 EPA, 2022). Two other sources of CO2 are hydrogen production and ammonia production (as a by-
1109 product), both of which ultimately rely on hydrocarbon feedstocks (Topham et al., 2014). 
1110 
1111 Agricultural activities contribute a variety of greenhouse gases (GHG) to the atmosphere, including CO2 

1112 and methane (US EPA, 2022). Using CO2 to enrich plants in greenhouses, or to adjust the pH of water, 
1113 even if initially absorbed by water, plants, and soil, will eventually become distributed between the 
1114 atmosphere, the oceans, and terrestrial systems (Esmeijer, 1999). However, passing CO2 that is already 
1115 produced from another process through a greenhouse or a water system does not necessarily increase the 
1116 level of environmental contamination, nor does it reduce it in a significant way. 
1117 
1118 Production of CO2 from carbonaceous fuels can also produce harmful gasses like NOx, SO2, and CO 
1119 (Wang et al., 2022). Greenhouse operators sometimes burn fuel to heat their greenhouses and return 

June 9, 2023, Page 26 of 50 



    

 
     

                
               
            

  
           

                  
                

               
       

  
             

            
        

             
              

             
          

  
          

       
         

                
                 

           
        

  
                 

   
       
            
               

   
            

  
  

               
                 

           
                

             
              

             
             

  
            

              
             

             
              

  
   

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

Full Scope Technical Evaluation Report Carbon Dioxide Crops 

waste CO2 to the greenhouse for atmosphere enrichment. However, the need to replace fuel burning for 
heat from clean energy sources such as solar and geothermal means that CO2 collected from heating 
processes may, by necessity, become used less frequently in the future (Wang et al., 2022). 

The efficiency by which a greenhouse can convert supplied CO2 into plant photosynthesis products can 
be measured by the CO2-use efficiency, or “CUE” (Wang et al., 2022). A CUE of 100% would mean that all 
of the supplied CO2 is converted by plant photosynthesis. Greenhouses usually have a CUE of less than 
60%, meaning that over 40% of the CO2 that is added is released into the atmosphere without being ever 
incorporated into plant biomass (Wang et al., 2022). 

According to Ntinas (2020), GHG emissions from greenhouse vegetable production is a central issue in 
northern Europe, and these systems contribute to climate change. Similarly, Esmeijer (1999) notes that 
greenhouse horticulture shares responsibility for the rising CO2 levels in the atmosphere. Fewer GHG 
emissions are produced transporting field-grown tomatoes from warm to cold climates, compared to 
growing tomatoes in heated greenhouses (Ntinas et al., 2020). Using renewable energy to heat 
greenhouses would improve their carbon footprint; but it would also mean that in order to achieve the 
same level of enrichment, CO2 from another source (likely fossil-fuel based) would still be used. 

Evaluation Question #7: Describe any known chemical interactions between the petitioned substance 
and other substances used in organic crop or livestock production or handling. Describe any 
environmental or human health effects from these chemical interactions (7 U.S.C. § 6518 (m) (1)). 
At normal temperatures, CO2 does not break down into simpler compounds, and it is not very reactive 
(Topham et al., 2014). While unlikely to be an issue in organic crop production, CO2 can react with 
hydrogen gas to form carbon monoxide (CO). It can also react with ammonia to form ammonium 
carbamate, which when dehydrated then forms urea (Topham et al., 2014). 

A selection of Safety Data Sheets note that CO2 (Airgas, 2018; Millipore Sigma, 2021; Praxair Inc., 2015): 
• is stable. 
• does not produce hazardous decomposition products. 
• does not polymerize under normal conditions of storage and use. 
• does not have specific data available for conditions to avoid, except high temperatures or 

electrical discharges. 
• does not have specific data for incompatible materials, except in combination with temperatures 

over 1000°F. 

According to the New Jersey Department of Health (2016), CO2 is not compatible with a variety of 
materials, most (but not all) of which are unlikely to be used in organic crop production. Exceptions to 
this are strong bases like sodium or potassium hydroxide that could exist in other crop inputs, and 
hydrogen peroxide that could be used in an algicide, disinfectant, or irrigation system cleaning product. 
Even so, mixing CO2 with sodium hydroxide forms sodium carbonate (washing soda), a substance 
allowed at 7 CFR 205.605. The reaction of CO2 with hydrogen peroxide forms peroxymonocarbonate 
(HCO4-, an oxidant similar to hydrogen peroxide but more reactive), but this reaction happens slowly and 
is unlikely to be of significant concern in organic crop production (Radi, 2022; Salvitti et al., 2023). 

Using acids (such as carbonic acid) to lower pH to 6.0-6.8 in some circumstances can improve the 
bioavailability of some nutrients, such as iron, zinc, boron, and manganese (Inamuddin et al., 2021; 
Brautigan et al., 2014). However, in wet environments or where large amounts of irrigation are used, 
lowering pH can also potentially lead to cations leaching from the soil (NRCS, 2011). For more 
information on the role of pH in crop production see the 2023 NOP technical report Sulfurous Acid (NOP, 
2023b). 
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Evaluation Question #8: Describe any effects of the petitioned substance on biological or chemical 
interactions in the agro-ecosystem, including physiological effects on soil organisms (including the 
salt index and solubility of the soil), crops, and livestock (7 U.S.C. § 6518 (m) (5)). 
Effects on organisms 
For information on the toxicity of CO2 to plants, microbes, and animals, see Evaluation Question #5 
(above). In summary: at low concentrations (up to about 1200 ppm), CO2 is generally safe and has low 
toxicity, and can have substantial beneficial effects to plants. However, at moderate concentrations (1200 
ppm to several percent, depending on duration and tolerance of a given species) CO2 can cause toxic 
effects in plants and animals. At high levels (>~50%), it can be toxic to microorganisms as well. 

For information on the benefits of CO2 to plants, see Specific Uses of the Substance, above. CO2 is the 
primary substrate for photosynthesis, and can be a limiting reagent, especially in C3 plants (see Inset 1: C3, 
C4, and CAM plants and their utilization of CO2). Increasing CO2 concentration to a point (up to about 1200 
ppm) can make photosynthesis more efficient, resulting in higher plant growth and yield (Enoch & 
Olesen, 1993; Rogers et al., 1997). Other positive responses have been documented as well, such as 
improved rooting of plant cuttings, and increases in root dry weight in some species (Rogers et al., 1997). 
In some cases, plants acclimate to the increased CO2, and photosynthetic rates fall back to rates of 
“normal” CO2 concentrations, though this is somewhat unusual (Rogers et al., 1997). 

Effects on soil 
In water, a small amount of CO2 (~0.1–0.3%) dissolves to form a weak acid, carbonic acid, which can also 
produce bicarbonate (HCO3-) and carbonate (CO32-) at varying proportions depending on pH (Lerman & 
Mackenzie, 2018; Topham et al., 2014). This weak acid plays a key role in weathering, increasing the rate 
at which certain minerals and rocks dissolve and others precipitate, therefore affecting soil chemistry 
(Lerman & Mackenzie, 2018; Topham et al., 2014). For example, this action temporarily increases the 
concentration of cations like calcium in the soil (Strawn et al., 2015). In wet environments, or those with 
prolonged irrigation cycles with acidified water (such as from CO2), these solubilized cations can be 
leached entirely from the soil (Strawn et al., 2015; Enoch & Olesen, 1993). In arid environments, 
bicarbonate (which is more soluble than carbonate and is present at a lower pH) and calcium are leached 
into lower layers (horizons) of soil (Strawn et al., 2015). Buildup of these substances leads to the 
formation of a cemented horizon (hardpan) that is difficult for plant roots and water to penetrate (Strawn 
et al., 2015). 

However, using CO2 to acidify water can improve water characteristics. In general, high alkalinity and 
high pH reduce water’s ability to infiltrate deeply into the soil, reflecting a property known as hydraulic 
conductivity (Ali et al., 2019). Adjusting alkaline water to a pH of approximately 6 has been shown to 
reduce the loss of hydraulic conductivity (Ali et al., 2019), which can be achieved by feeding CO2, or 
another acidic material like gypsum, sulfuric acid, or sulfur, into the water source. 

Effects on denitrification 
In anaerobic conditions, specific bacteria (e.g., Pseudomonas spp., Acromobacter spp., Paracoccus spp., and 
Thiobacillus denitrificans) reduce nitrate (NO3-) and nitrite (NO2-) to nitric oxide (NO), nitrous oxide (N2O), 
and nitrogen gas (N2) (Gowariker et al., 2008; Wei et al., 2015). Crop producers can expect to lose 3–62% 
of the nitrogen applied to the soil, due to denitrification processes (Gowariker et al., 2008). The rate of 
denitrification is influenced by (Gowariker et al., 2008): 

• the amount (and type) of organic matter present 
• moisture content 
• aeration 
• soil pH and temperature 
• concentration and form of inorganic nitrogen (ammonium vs. nitrate) 

The denitrification process occurs within bacterial cells, sequentially reducing nitrogen compounds in an 
electron transport chain process (Wan et al., 2016). Electron transport chains are biochemical processes 
involving several steps. Electrons are passed to a series of cellular components, providing the energy to 
create an electrochemical gradient across a membrane (due to more protons existing on one side of a 
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1226 membrane than the other) (Clark et al., 2020). This gradient drives another specific chemical reaction, 
1227 usually to generate adenosine triphosphate (ATP), a universal energy-carrying molecule. Blocking any 
1228 step in the chain can disrupt the process. Denitrification uses many of the same basic cellular components 
1229 as aerobic respiration (with a few differences as well), except that nitrogen is used as the electron acceptor 
1230 instead of oxygen (Chen & Strous, 2013). 
1231 
1232 Researchers have found that increasing environmental CO2 concentrations can affect denitrification rates, 
1233 but with varying responses (Wan et al., 2016). For example, in one study, increased CO2 was associated 
1234 with decreased denitrification, while in another, it was associated with an increase in denitrification. 
1235 These varying results could be due to indirect effects that CO2 has on the environment and denitrification 
1236 processes, such as altering pH, displacing oxygen, and serving as a carbon source. However, CO2 also 
1237 acts directly on bacterial cells, disrupting components of the electron transport chain and decreasing 
1238 denitrification (Wan et al., 2016). 
1239 
1240 Using the denitrifying bacteria Paracoccus denitrificans in a lab experiment, Wan et al. (2016) found a 
1241 strong decrease in denitrification at even the lowest treatment level of 1000 ppm CO2 (see Figure 8, 
1242 below). They found that the strong, concentration-dependent effect of CO2 on denitrification was caused 
1243 by damage to bacterial membranes, and disruption of the electron transport chain (Wan et al., 2016). 
1244 
1245 While at first, the decrease in denitrification might appear to be a positive effect of CO2, Wan et al. (2016) 
1246 found that nitrous oxide and nitrite production increased (see Figure 9, below). Instead of the bacteria 
1247 completely reducing nitrate to nitrogen gas, they produced more intermediate products (like nitrous 
1248 oxide). Unlike nitrogen gas, nitrous oxide is an important greenhouse gas, nearly 300 times more 
1249 powerful than CO2 (US EPA, 2022). 
1250 

1251 
1252 Figure 8: Total nitrogen removal efficiency during denitrification by Paracoccus denitrificans under different CO2 
1253 treatments. Adapted from Wan et al. (2016). 
1254 
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1256 Figure 9: Nitrous oxide generation by Paracoccus denitrificans under different CO2 treatments. Adapted from Wan 
1257 et al. (2016). 
1258 
1259 Increased toxicity of copper and pesticides 

Dissolving CO2 in water decreases pH, which can increase the toxic effects of copper on the marine 
1261 polychaeta (segmented worm), Arenicola marina (Campbell et al., 2014). Cryer et al. (2022) estimated that a 
1262 decrease of 0.3 pH units in the ocean will double the proportion of dissolved copper, Cu2+, the most 
1263 bioavailable form of the metal. This level of acidification is predicted to occur before the end of this 
1264 century due to anthropogenic contributions to atmospheric and oceanic CO2 (Campbell et al., 2014; Cryer 

et al., 2022). In a lab experiment, CO2 appeared to work synergistically with copper, reducing calcification 
1266 and respiration rate in the coral Stylophora pistillata (Cryer et al., 2022). Copper can be naturally occurring 
1267 but is also used as a pesticide. See the 2022 NOP technical report Copper Products (Fixed Coppers and Copper 
1268 Sulfate) for more information (NOP, 2022). 
1269 

According to Enoch & Oleson (1993), CO2 can affect the activity of pesticides like chlorpyrifos, 
1271 metolachlor, fenamiphos, and EPTC (s-ethyl dipropylthiocarbamate) on nitrifying bacteria. When CO2 

1272 concentrations are below or above optimal concentrations for nitrifying bacteria, these pesticides can 
1273 inhibit nitrification (Enoch & Olesen, 1993).8 Nitrification, the reverse process of denitrification, is an 
1274 aerobic process of converting nitrogenous wastes into ammonium (NH4+) and then subsequently nitrite 

(NO2-) and nitrate (NO3-) (Clark et al., 2020; Muck et al., 2019). However, these synthetic pesticides are not 
1276 allowed for use in organic agriculture. 
1277 
1278 Evaluation Question #9: Discuss and summarize findings on whether the use of the petitioned 
1279 substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) 

(A) (i)). 
1281 Besides independent researchers, numerous government and international organizations now study the 
1282 effects of global warming on humans and the environment, including: 
1283 • U.S. Department of Energy 
1284 • U.S. Environmental Protection Agency 

• National Oceanic and Atmospheric Administration 
1286 • Intergovernmental Panel on Climate Change 
1287 

8 Maximum nitrification occurs between 5 and 29 ml CO2/L (5000–29,000 ppm) (Enoch & Olesen, 1993) 
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Researchers produce a staggering amount of information that is not possible to synthesize into this 
report, except to say that any activities that generate excess CO2 contribute to an ecological problem that 
has overwhelming proportions. 

Human activities that generate CO2 directly disrupt the global equilibrium of greenhouse gases, 
contributing to global warming, climate change, and ocean acidification (IPCC, 2021; Solomon et al., 
2007). It is now widely known that these changes negatively affect many existing species, including 
humans. According to the U.S. EPA and the Intergovernmental Panel on Climate Change (IPCC), climate 
change affects health, the environment, and the economy (US EPA, 2021; Portner et al., 2022): 

• increasing the frequency, intensity, and duration of heat waves, which pose health risks to the 
young and elderly. 

• worsening air and water quality. 
• increasing the spread of diseases. 
• altering the frequency and intensity of extreme weather events. 
• raising sea level, threatening coastal communities and ecosystems. 
• changing patterns of rainfall, affecting water supply and hydroelectric energy. 
• ecosystem changes, including changes in the geographic ranges of plant and animal species, 

timing of reproduction and migration. 
• increasing disruptions to society, property damage, and economic damage due to heat waves, 

drought, fire, and floods. 

Increases in atmospheric CO2 do not only affect terrestrial systems. While the oceans have served as a 
crucial buffer to atmospheric CO2 increase, this has led to ocean acidification (Khatiwala et al., 2013). This 
can negatively affect marine organisms. According to the IPCC (Portner et al., 2022) human-caused 
climate change has caused: 

• widespread and rapid changes in the atmosphere, ocean, cryosphere, and biosphere. 
• sea level increase of 0.2 m between 1901 and 2018. 
• an increase in the rate of sea level rise, from 1.3 mm/yr. between 1901-1971, to an increase of 

3.7 mm/yr. between 2006-2018. 
• damage and irreversible loss in a variety of ecosystems, including in the oceans. 
• hundreds of local losses of species on land and in the oceans. 
• ocean warming and acidification, which have adversely affected food production from fisheries. 

Despite the global danger of increasing CO2, in some circumstances, it can be used for agriculture without 
adding harm to the environment. If the CO2 were produced as a by-product of another activity and would 
otherwise have been disposed of into the atmosphere anyway, producers could pass it through an 
agricultural system without causing any additional increase in CO2. However, using recycled CO2 does 
not actually reduce emissions over the long term, because eventually this CO2 is still returned to the 
atmosphere when crops decay or are digested and respired by organisms (Esmeijer, 1999). If done 
correctly, it could offer increased crop yields in specific scenarios without causing more harm than would 
have otherwise occurred if it were simply released into the atmosphere. There is still some potential that 
CO2, even if used at relatively moderate concentrations, could cause an increase in even more potent 
greenhouse gases in the soil (see Evaluation Question #8, above). CO2 has the potential to inhibit 
denitrification processes, leading to increased nitrous oxide emissions. 

Applying CO2 at higher than optimum levels could cause toxicity to a wide variety of organisms (see 
Evaluation Question #5). This situation is unlikely, however, because it would also begin to exert negative 
growth effects on crops, thus defeating the purpose of its use. 
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Evaluation Question #10: Describe and summarize any reported effects upon human health from use 
of the petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (i), 7 U.S.C. § 6517 (c) (2) (A) (i)) and 7 U.S.C. § 
6518 (m) (4)). 
No obvious short-term symptoms of toxicity occur when CO2 concentrations are below 3% (30,000 ppm) 
(Price, 2015). Exposure to atmospheres containing 2% CO2 for several hours increases blood pressure, 
produces acute headache, and increases the rate and labor of breathing. Above 3%, serious breathing 
difficulties follow. At 6%, sensory impairment may occur after a few minutes of exposure. Exposure to 
CO2 at 9-10% concentration causes unconsciousness in as little as 5 minutes. Between 15 and 20% 
atmospheric concentration, loss of consciousness and muscle spasms begin, and above 20%, convulsions 
and death can occur within minutes. CO2 acts as an asphyxiant (a suffocating agent) and many of the 
symptoms associated with CO2 exposure are linked to oxygen deprivation (Price, 2015). 

CO2 can also be defined as a toxicant since it induces unconsciousness, respiratory failure, inflammation, 
and sensory impairment (Guais et al., 2011; Permentier et al., 2017). The classification of CO2 as a toxicant 
is supported by the tendency of victims to lose consciousness within seconds of exposure to 30% 
atmospheres, rather than gradually suffocating or leaving the area (Permentier et al., 2017). Guais et al. 
(2011) describe multiple toxic effects of CO2 observed in animal studies, including inflammatory effects to 
the lungs, cardiovascular system, and bladder, reproductive or birth defects, and cancers. Most of the 
severe and irreversible effects follow long-term exposure (generally weeks to months) to excessive CO2 

concentrations, far higher than would be encountered in most work environments. 

No definitive toxic CO2 level exists because tolerance among individuals is variable (Permentier et al., 
2017). Tolerance appears to decrease with age, and smokers tend to develop greater tolerance as a result 
of frequent exposure (Permentier et al., 2017). 

Instances of CO2 poisoning are exceedingly rare events (Price, 2015). The concentrations found in nature, 
in typical industrial settings, or used in greenhouses, are far lower than any of the concern levels listed 
above and are not a threat to human health (Price, 2015). Adverse effects generally begin following 
exposure to 1% or greater CO2, while background atmospheric levels are approximately 0.04% and 
enriched greenhouse atmospheres are approximately 0.1%. Confined areas like mines, silos, or 
fermentation chambers, for example, may be environments where CO2 concentrations can surpass 1%, 
sometimes significantly (Price, 2015). 

Historically, some poisoning events have been reported, often related to small enclosed spaces containing 
large amounts of materials in a state of fermentation or decomposition (Price, 2015). The Occupational 
Safety and Health Administration (OSHA) estimates approximately 90 deaths per year related to 
confinement in enclosed spaces, two thirds of which are rescuers attempting to retrieve others 
(Permentier et al., 2017). One well-publicized natural asphyxiation event occurred in Cameroon in 1986, 
when massive amounts of CO2 were released from a volcanic lake, leading to the deaths of 1,700 people 
(Price, 2015; Scott et al., 2009). Several suicide cases are recorded each year related to dry ice confined 
with a victim in a small space, such as a car (Permentier et al., 2017). 

Dry ice must be handled with extreme care due to its low temperature, and can cause severe burns or 
frostbite upon superficial contact with skin, sometimes leading to blistering or even tissue death (FSIS 
Environmental Safety and Health Group, n.d.; Scott et al., 2009). Direct contact with CO2 emitted from 
compressed cylinders may provoke similar freeze burn effects (FSIS Environmental Safety and Health 
Group, n.d.). 

The current OSHA Permissible Exposure Limit (PEL) for 8-hour exposure to gaseous CO2 is 5,000 ppm, or 
0.5% (OSHA, 2022). 

A secondary, indirect effect of CO2 enrichment that may have repercussions for human health is an 
increase in the use of pesticides (Rogers et al., 1997). Since increased CO2 concentrations in the air or the 
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soil leads to increases in plant growth and altered nutrient balance, rhizodeposition9 would be expected 
1391 to increase as well (Rogers et al., 1997). Elevated CO2 and increased rhizodeposition might lead to 
1392 increased microbial activity in the rhizosphere from beneficial as well as pathogenic organisms (Rogers et 
1393 al., 1997). Producers may be inclined to apply more pesticides in response (Rogers et al., 1997). Pesticides 
1394 are known to pose myriad health risks to applicators, and their residues in food and water can expose the 

general public to a range of toxins (Damalas & Eleftherohorinos, 2011). 
1396 
1397 Evaluation Question #11: Describe all natural (non-synthetic) substances or products which may be 
1398 used in place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed 
1399 substances that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). 

There is no substitute for gaseous CO2 in plant biology. It is an essential component of the photosynthesis 
1401 process. Evaluation Question #12 describes several practices resulting in nonsynthetic CO2 which may be 
1402 used for atmospheric enrichment. 
1403 
1404 The petition to add synthetic CO2 to the National List as a crop or soil amendment covers a number of 

different applications with distinct purposes, as described earlier in Specific Uses of the Substance. One of 
1406 those is soil pH reduction. The only readily available nonsynthetic acid currently allowed to reduce the 
1407 pH of irrigation water in organic production is citric acid, though the quantities needed and expense are 
1408 vastly larger than with synthetic mineral acids like sulfuric, nitric, and phosphoric (Evans, 2014; 
1409 University of Minnesota Extension, 2022). While some other nonsynthetic acids exist, it seems doubtful 

that they would be readily available in large enough quantities, at reasonable prices, to reduce the pH of 
1411 irrigation water, and none of the extension services or papers consulted for this report mention any. 
1412 
1413 Soil pH can be reduced indirectly, without the use of acids. Synthetic elemental sulfur, permitted by the 
1414 National List at 7 CFR 205.601(j)(2), and gypsum, available as an allowed nonsynthetic material, both 

works gradually to reduce soil pH. Elemental sulfur is also used in the production of sulfurous acid, 
1416 permitted as a plant or soil amendment by the National List at § 205.601(j)(11) when produced on-farm. 
1417 
1418 While gypsum (CaSO4) is not itself acidic, it can work in alkaline soils to reduce pH when sodium is also 
1419 present (Brautigan et al., 2014). The calcium in gypsum displaces sodium in sodium carbonate (Na2CO3) 

to precipitate calcium carbonate due to solubility differences between the materials (calcium carbonate is 
1421 less soluble than sodium carbonate) (Brautigan et al., 2014). The concentration of soluble carbonates is 
1422 thereby reduced and pH decreases, though by a more modest margin than direct acid application 
1423 (Brautigan et al., 2014). However, the starting pH value is critical when applying gypsum, which only has 
1424 an effect at pH 8.4 and above; gypsum will have no pH reducing effect when the soil is pH 4.5-8.4 

(Franzen et al., 2006). There also appears to be a complementary pH-reducing effect between gypsum 
1426 application and the type of plant grown in the soil, likely the result of the specific plant’s root system’s 
1427 ability to transport gypsum deeper into the soil (Brautigan et al., 2014; Jarwal et al., 2001). Canola and 
1428 chickpea rotations have been shown to be more effective at lowering soil pH than wheat and safflower 
1429 rotation when combined with gypsum, for example (Brautigan et al., 2014; Jarwal et al., 2001). 

1431 The application of sugars, such as glucose or molasses, may also indirectly reduce pH, despite not being 
1432 acidic substances (Brautigan et al., 2014). Sugars serve as food for microbial populations in the soil that 
1433 exude organic acids. The result is temporary since the sugars are consumed completely by microbial 
1434 populations in as little as two months, after which pH begins to rise again (Brautigan et al., 2014). 

1436 Following direct application or suspension in irrigation water, elemental sulfur is oxidized by Thiobacillus 
1437 spp. in the soil (Tabak et al., 2020). These bacteria exude sulfuric acid as hydrogen and sulfate ions 
1438 (Sibbett, 1995; Tabak et al., 2020). In alkaline soils rich in carbonates, the pH change is typically negligible 
1439 because of the sheer volume of carbonates that resist neutralization (Tabak et al., 2020). However, pH 

reduction may be more dramatic in soils without much carbonate (Tabak et al., 2020). Non-calcareous 
1441 soils rich in clay and organic matter exhibit slow pH reduction, a property known as the buffering 

9 Rhizodeposition is the process by which plants release organic and inorganic material back to the soil through the roots, including 
root cells, secretions, nutrient ions, and nitrogen and carbon compounds (Wichern et al., 2008). 
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capacity, following application of elemental sulfur (Tabak et al., 2020). The acidifying effect of sulfur can 
help to alleviate micronutrient deficiencies by the same acidification mechanism discussed elsewhere in 
this report (Tabak et al., 2020). 

There is currently a lack of available academic and experimental data regarding the efficacy of sulfurous 
acid in comparison to other pH reducers used on soil or in irrigation water (H Zia et al., 2006). While 
sulfurous acid is not available commercially due to its instability, sulfurous acid generators are on the 
market for use on-site (NOP, 2014b; OMRI, 2021). These systems work by burning (oxidizing) elemental 
sulfur, producing sulfur dioxide gas (NOP, 2014b). The captured sulfur dioxide is then dissolved in 
irrigation water that passes through the chamber, forming hydrogen sulfite, also known as sulfurous 
acid, and the water is sprayed through irrigation equipment (NOP, 2014b). Although research is scant 
regarding the pH reducing effects of sulfurous acid on soil, at least one study has demonstrated that 
using sulfurous acid generators reduces sodium carbonate levels in saline irrigation water used in rice 
paddies (H Zia et al., 2006). 

Evaluation Question #12: Describe any alternative practices that would make the use of the petitioned 
substance unnecessary (7 U.S.C. § 6518 (m) (6)). 
As a carbon nutrient source, the use of dissolved CO2 is generally impractical as discussed in Specific Uses 
of the Substance and Action of the Substance above. General soil management practices including the 
application of organic matter, and exposure to ambient air concentrations is sufficient in comparison. 

There are several methods to increase CO2 concentration within indoor crop production facilities, where 
CO2 is a by-product of biological processes. All of these methods are based on harnessing gas emitted 
from organic decomposition. 

Controlled fermentation 
In small greenhouses, it may be beneficial to ferment sugars with yeast in buckets to increase indoor CO2 

concentrations (Poudel & Dunn, 2017). This method introduces difficulties in controlling CO2 levels and 
can produce unpleasant odors (Poudel & Dunn, 2017). This method also may not be practical for all 
operations. Approximately 1 kg of sugar will produce 0.5 kg of CO2 upon full fermentation (Poudel & 
Dunn, 2017). In a 100 m2 (approximately 1,075 ft2) greenhouse, it is estimated that approximately 0.5 kg of 
CO2 would be needed per hour to maintain CO2 levels at 1300 ppm (Ontario Ministry of Agriculture, 
Food and Rural Affairs, 2002). CO2 generators fueled by propane or natural gas can produce 
approximately 3.7 kg of CO2 per hour, by contrast (Poudel & Dunn, 2017). However, the resulting ethanol 
produced from sugar fermentation could later be used as fuel for more combustion-based CO2 generation 
(Poudel & Dunn, 2017). 

In-vessel composting 
In an analysis of available literature, Thomson et al. (2022) concluded that repurposing the ample CO2 

produced from onsite composting operations would be comparable in price to generating it by natural 
gas or propane combustion. The researchers saw significant opportunities for compost-based CO2 

generation systems by utilizing in-vessel composting of crop waste within grow buildings. They do 
concede that little research has been devoted to the topic, and other challenges may be factors, including 
undesirable buildup of odors, methane, ethylene, ammonia, or other gases from compost systems that 
may cause plant damage in enclosed environments (Thomson et al., 2022). 

Some studies have evaluated CRAM (crop residues and animal manure) composting systems to increase 
CO2 levels in greenhouses. Jin et al. (2009) explored CRAM systems inside greenhouses as a supplemental 
CO2 source. The researchers composted a mixture of rice straw crop residue and pig manure, inoculated 
with fungal species, and found that CO2 levels were more than double the levels in control greenhouses 
after eight days, reaching as high as 1000-1500 ppm in the morning. Increased CO2 persisted for two 
weeks, and vegetable yields increased significantly compared to the control. Karim et al. (2020) devised 
similar trials using manure and wheat straw inoculated with fungus in indoor CRAM systems and had 
comparable success, measuring CO2 concentrations between 1000-1500 ppm. Jin et al. (2009) found that 
the average yield increases over three sites were: celery (270%); leaf lettuce (257%); stem lettuce (87%); 
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oily sow-thistle (140%); and Chinese cabbage (227%). Karim et al. (2020) also recorded dramatic yield 
increases for cherry tomato, measuring an increase of 500 kg/hectare. Vitamin C and total soluble sugar 
content was also elevated while nitrate was decreased in the vegetables grown in greenhouses utilizing 
the CRAM composting method in both studies (Jin et al., 2009; Karim et al., 2020). 

Compost feedstocks determine the levels of CO2 emitted during the indoor composting process 
(Thomson et al., 2022). Bean dregs from tofu production have been shown to be particularly effective at 
increasing CO2 emissions when added as supplemental feedstocks in CRAM systems, but also lead to loss 
of nitrogen as emitted ammonia and NOx gases (Thomson et al., 2022; Yang et al., 2020). However, the 
combination of bean dregs with biochar increases CO2 emissions while preventing nitrogen loss in the 
final compost product, while also reducing emissions of the potent greenhouse gases methane and 
nitrous oxide (Yang et al., 2020). The addition of porous mineral feedstocks such as clays, zeolite, and 
diatomite have resulted in similar CO2 increases combined with emission reductions of more harmful 
greenhouse gases (Thomson et al., 2022). 

Water treatment for alkaline irrigation water 
Options are limited in reducing the alkalinity and pH of irrigation water apart from neutralization with 
acids. The simplest alternatives involve growing crops in environments suited to their production and 
utilizing clean, neutral irrigation water, but this is not always feasible or possible. 

Soluble salts in irrigation water may be the cause of high alkalinity, and many producers use reverse 
osmosis systems to remove them, though these systems may be expensive (Texas A&M University, n.d.; 
University of Massachusetts Amherst, 2015). Reverse osmosis systems work by utilizing pressure to force 
salty water through a membrane, leaving salts on one side and purified water on the other (Will & Faust, 
2015). In situations where a water source is extremely high in soluble salts, reverse osmosis may be 
useful, but also introduces risks of micronutrient deficiency since these are also removed (Texas A&M 
University, n.d.). 

Modest and temporary pH reductions can be achieved through the cultivation of specific cover crop 
legumes like alfalfa, fava bean, vetch, and lupine (Brautigan et al., 2014; R. K. Xu et al., 2002; Yan et al., 
1996). Plant roots may secrete acidic hydrogen ions as they grow, but once the plants are removed, the 
pH tends to rise back to previous levels within months (Brautigan et al., 2014; Yan et al., 1996). However, 
retaining the crop stubble prolongs the pH reduction effect (R. K. Xu et al., 2002). 

Brautigan et al. (2014) found that the application of a combination of earthworms and horse manure 
significantly lowered soil pH, but did not attribute it to the acidity of their castings. Instead, they 
concluded that the worms dragged manure deeper into the soil profile. While manure tends to have an 
alkaline pH, the authors attributed the pH reduction to the release of acids by the worms as they digested 
the manure, the secretion of acids by microbes digesting the manure, and by the decomposing corpses of 
worms (Brautigan et al., 2014). 

Requested NOSB Discussion Topic 

Focus Question: Describe the use frequency and application rates of all application methods, 
including in greenhouses and others. 
Greenhouse atmosphere enrichment 
Quantifying optimal application rates and use frequency for greenhouse CO2 enrichment is difficult 
because so many factors must be considered in indoor production systems, including construction 
materials, climate, available energy sources, growth substrate, water supply, nutrient supply, and labor 
(Hemming et al., 2008; Vanthoor, 2011). Particularly in Western Europe, several software systems are 
available to help automate the control of these factors (Hemming et al., 2008). 

In cooler climates, supplemental CO2 is most often utilized from fall to early spring since vents tend to be 
closed for temperature control during cold periods (Poudel & Dunn, 2017). Many commercial operators 
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use computers combined with gas analyzer instruments to automate supplementation (Hemming et al., 
2008; Ontario Ministry of Agriculture, Food and Rural Affairs, 2002). The Ontario Ministry of Agriculture 
(2002) provides a mathematical formula for sustaining CO2 levels of 1300 ppm during the day: 

A typical greenhouse with a 2.4 m gutter has an approximate air volume of 400 m3/100 m2 floor area. To 
increase the level from 300–1,300 ppm requires the addition of 1,000 ppm or 0.1% CO2. This requires 0.40 
m3 or 0.75 kg of CO2 per 100 m2 of greenhouse floor space. Add this amount before sunrise because 
photosynthetic activity is usually the greatest early in the day. After a level of 1,300 ppm is achieved, it 
must be maintained…Leaks in the greenhouse allow a continuous infiltration of outside air, which contains 
only 340 ppm CO2. An average value for infiltration in a glass house would be one air change per hour. To 
compensate for this dilution, approximately 0.37 kg CO2/100 m2 must be added to maintain the desired 
level of 1,300 ppm CO2. 

Note that this recommendation is from 2002, when outdoor CO2 levels were lower than today. 
Additionally, since these recommendations were based on the climate of Ontario, Canada, we can expect 
significant variation from other growing regions. However, we can provide very rough estimates of 
maximum application rates in the United States using these guidelines if we make a few basic 
assumptions. If we assume that all greenhouse acreage in the United States sustains daytime CO2 

concentrations in greenhouses at 1300 ppm, and that all producers use natural gas burners to produce the 
CO2, we can calculate maximum usage rates and maximum natural gas consumption resulting from it. 
Using the most recent data from the USDA NASS 2017 census of agriculture (2019) detailed below, and 
statistics provided by the U.S. Energy Information Administration (2022) we could conclude that in this 
hypothetical scenario: 

• U.S. greenhouse producers would use a maximum of approximately 129,000 kg of CO2 per day to 
maintain 1300 ppm CO2. 

• 129,000 kg of CO2 can be produced from approximately 71,800 cubic meters of natural gas (also 
equivalent to 71,800 liters of propane). 

• The U.S. population currently uses approximately 6.5 cubic meters of natural gas per capita, per 
day. 

• The maximum amount of natural gas usage for all greenhouse acreage CO2-enrichment is equal 
to the usage of approximately 11,000 people per day. 

• Maximum application of CO2 to greenhouses equals approximately 0.008% of the natural gas 
used in electricity generation in the U.S. per day. 

Gas burners also serve the second purpose of heating the indoor space, and it is important to note that 
fuel used primarily for heating is not included in these calculations. 

Interest in the utilization of repurposed CO2 in industrial agricultural greenhouses has increased recently, 
partly for yield enhancement, but also as part of a mitigation strategy for reducing greenhouse gas 
emissions (IEA, 2019). The global leader in CO2 consumption for agricultural greenhouse use is the 
Netherlands, estimated to use 5-6.3 million metric tons (MMT) annually (IEA, 2019). However, it is 
estimated that only 0.5 MMT comes from repurposed external sources, with the remainder being 
generated onsite from burning natural gas, meaning that the effect on greenhouse gas emissions is a net 
increase (IEA, 2019). In the Netherlands, the horticultural industry (where greenhouses are used 
extensively) was responsible for emitting 8.0 MMT of CO2 in 1996, 12% more than at the end of the 
previous decade (Esmeijer, 1999). 

Furthermore, only 10-20% of CO2 pumped into greenhouses is absorbed by plants, with the remainder 
vented outside to control humidity (Esmeijer, 1999; IEA, 2019). The IEA (2019) states that greenhouse use 
has a low potential as a carbon capture climate change mitigation strategy because biological storage is 
exceedingly temporary. The carbon utilized in biological processes is ultimately eaten and digested, 
decomposes, is composted, or is used in the production of other products and fuels, all of which release 
the CO2 back to the atmosphere following combustion or decomposition (Esmeijer, 1999; IEA, 2019). 
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In 2017, there were 10,849 greenhouse farms in the U.S producing vegetables and fresh cut herbs (USDA 
NASS, 2019). The area under greenhouse production for vegetables and fresh cut herbs was 112,564,105 
square feet, or 2,584 acres. Sales from these farms was $748 million. Tomatoes were the most common 
crop grown, accounting for 56% of greenhouse area (63,929,576 square feet, or 1,468 acres) (USDA NASS, 
2019). 

At the same time, there were 846 farms in the U.S. producing greenhouse fruits and berries (USDA NASS, 
2019). The area under greenhouse production for greenhouse fruits and berries was 11,708,439 square 
feet, or 269 acres. Sales from these farms was $25 million (USDA NASS, 2019). 

States with the most area in greenhouse production for vegetables and fresh cut herbs include (USDA 
NASS, 2019): 

• California: 35.2 million ft2 (808 acres) 
• Texas: 7.4 million ft2 (170 acres) 
• New York: 5.4 million ft2 (124 acres) 
• Ohio: 5.0 million ft2 (115 acres) 
• Pennsylvania: 4.1 million ft2 (94 acres) 
• Maine: 3.4 million ft2 (78 acres) 

States with the most area in greenhouse production for fruits and berries include (USDA NASS, 2019): 
• California: 6.3 million ft2 (145 acres) 
• Florida: 1.8 million ft2 (41 acres) 
• Oregon: 0.7 million ft2 (16 acres) 
• Michigan: 0.3 million ft2 (7 acres) 

In Canada, there were estimated to be 2,978 greenhouses in operation in 2015, with a total area of 
256,153,124 square feet, or 5,880 acres (Alberta Government, 2018). Greater than half of that area was in 
the province of Ontario alone, covering an area of 150,908,226 square feet, or 3,464 acres (Alberta 
Government, 2018). Not all greenhouse area is used in vegetable production (Alberta Government, 2018). 
In 2019, the harvested area of greenhouse vegetables in Canada was 189,592,249 square feet, or 4,352 acres 
over 838 operations (Agriculture and Agri-Food Canada (AAFC), 2020). The 2019 values for the top-
producing Canadian provinces by harvested area of greenhouse vegetable production are (Agriculture 
and Agri-Food Canada (AAFC), 2020): 

• Ontario: 133.4 million ft2 (3,062 acres) 
• British Columbia: 32.6 million ft2 (748 acres) 
• Quebec: 13.7 million ft2 (315 acres) 
• Alberta: 8.0 million ft2 (184 acres) 

The majority of greenhouse vegetables grown in Canada are by far tomatoes, cucumbers, and peppers 
(Agriculture and Agri-Food Canada (AAFC), 2020; Alberta Government, 2018). Of the vegetables 
exported (by volume and value), greater than 99% are sold in the United States (Agriculture and Agri-
Food Canada (AAFC), 2020). 

Irrigation water acidification 
The optimal frequency and application rates for irrigation water acidifiers, including CO2, are similarly 
difficult to quantify. Factors affecting the amount of necessary acidifier to reach a certain pH and 
alkalinity include the alkalinity of the water, the crop, the acid dissociation constant of the acidifier, soil 
or substrate pH and alkalinity, and container size (Whipker et al., 1996). Each growing environment 
necessitates different adjustments to reach optimal conditions. Many universities agricultural extension 
services offer calculators to help growers determine sufficient volumes of acidifiers to use, but these 
typically only focus on nitric, sulfuric, phosphoric, and sometimes citric acids. 

Some of the CO2 from enriched water escapes into the surrounding air (Enoch & Olesen, 1993). In 
greenhouses, examples described by Enoch & Olesen show an increase up to 800 ppm over normal 
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1658 atmospheric concentrations.10 Some of this may be absorbed by plants, but greenhouses with similar 
1659 levels supplied in gaseous form are known sources for emitting CO2 (Esmeijer, 1999). 
1660 
1661 Relation to total CO2 emissions 
1662 Anthropogenic emissions of CO2 come from a variety of sources (see Figure 10, below), with the largest 
1663 sources relating to transportation, electric power generation, and industrial usage (US EPA, 2022). Within 
1664 agricultural activities, which in the U.S. cause approximately 10% of all emissions, the EPA does not 
1665 mention CO2 enrichment of irrigation water or greenhouse atmosphere. Outside of agricultural values, 
1666 the EPA estimates that in 2020, the emissions from captured CO2 (such as might be used to produce 
1667 bottled CO2 for greenhouse use) were 5.0 MMT.11 At the same time, natural gas systems overall (such as 
1668 might be burned for greenhouse use) contributed 35.4 MMT of CO2 (US EPA, 2022). Greenhouse and field 
1669 use of captured CO2 and natural gas burner systems are only some of the many uses that would fall 
1670 under the EPA’s metrics. 
1671 
1672 For comparison, agricultural soil management (such as applying fertilizer, irrigation, drainage, tillage 
1673 and other practices that produce N2O) contributes the most agricultural emissions, with 345 MMT of CO2 

1674 equivalent produced in 2020 (see Figure 11, below); however many of these emissions are actually other 
1675 gases such as N2O and CH4 (US EPA, 2022). 
16761677 

1678 
1679 Figure 10: 2020 Sources of U.S. CO2 emissions in millions of metric tons equivalent (MMT CO2 Eq.). LULUCF 
1680 (land use, land-use change, and forestry) represents the negative emission (CO2 removal) resulting from carbon 
1681 storage in forests, croplands, wetlands, grasslands, and settlements. Adapted from U.S. EPA (2022). 
1682 
1683 Note: MMT CO2 Eq. represents the combination of all greenhouse gases and their global warming 
1684 potential (GWP), adjusted to the equivalent GWP of CO2. Emissions from aluminum production, carbide 
1685 production, CO2 consumption, ferroalloy production, lead production, magnesium production, other 
1686 process uses of carbonates, phosphoric acid production, soda ash, titanium dioxide, urea consumption, 
1687 and zinc production are included in “Other industrial processes.” Emissions from abandoned oil and gas 
1688 wells and coal mining are included in “Other energy.” In the pie graph, CO2 represents 78.8% of 
1689 emissions. The other greenhouse gases represented in the pie graph are CH4 (methane), N2O (nitrous 
1690 oxide), HFCs (hydrofluorocarbons), PFCs (perfluorocarbons), SF6 (sulfur hexafluoride), and NF3 (nitrogen 
1691 trifluoride). 
1692 

10 We were not able to evaluate the papers referenced by Enoch & Oleson ourselves due to language barriers and lack of availability 
for these resources, which were older and not found in contemporary databases. 
11 The EPA notes that this category of CO2 includes a variety of commercial applications, including food processing, chemical 
production, carbonated beverage production, and refrigeration (US EPA, 2022). 
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1693 

1694 
Figure 11: 2020 Agriculture sector U.S. greenhouse gas emission sources in MMT CO2 Eq. Adapted from U.S. EPA 1695 

1696 (2022). 
1697 
1698 Note: Enteric fermentation is the process that occurs in the stomachs of cows, sheep, and goats, where 
1699 microbes digest food and produce methane. IPPU stands for Industrial Processes and Product Use and 
1700 includes emissions from non-energy related material processing and manufacturing. 
1701 
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